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FOREWORD

This document presents the results of a contract study entitled "Engine/

Airframe Compatibility Studies for Supersonic Cruise Aircraft" performed

for NASA by the Douglas Aircraft Company, McDonnell Douglas Corporation.

The NASA technical monitor for the study was F. E. McLean, Advanced Supersonic

Technology Office, Langley Research Center, Hampton, Virginia.

This study program was under the overall direction of R. D. FitzSimmons,

Director,Advanced Supersonic Transport. The Technical Manager was W. T. Rowe.

This report consists of results of in-depth analyses of a supersonic trans-

port configuration with alternate engines (mini-bypass turbojet, duct burning

turbofan, and variable cycle) integrated in place of a dry turbojet engine.
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SYMBOLS AND ABBREVIATIONS

A.C., a.c. Aerodynamic Center

Ac  Inlet Capture Area

A0  Freestream Capture Area

A /Ac  Mass-flow Ratio

Ao/Ac) bleed Mass-flow Ratio of Inlet Bleed Flow

ARROW Automatic Re-analysis and Redesign for Optimum Weight

Aux Auxiliary

Ag9.1 Nozzle Exit Area

A10  Nozzle Reference Area

BPR Bypass Ratio

BTU British Thermal Unit

c Local Wing Chord

c Mean Aerodynamic Chord

oC  Temperature-Celsius

CD  Drag Coefficient =
qoSref

C.G., c.g. Center of gravity

C Lift Curve Slope of Elastic Wing
CRL

CLR Lift Curve Slope of Rigid Wing

C E/R
CL Ratio of Elastic to Rigid Lift Curve Slope

cm Centimeter

CPR Cycle Pressure Ratio

D Drag, Diameter

DAFT  Afterbody Drag

vii



DAC Douglas Aircraft Company

DH Duct Heating

DOC Direct Operating Cost

EAS Equivalent Air Speed

ECS Environmental Control System

EGT Exhaust Gas Temperature

EPNdB Effective Perceived Noise Levels in Decibels

FT. Feet

OF  Temperature- Fahrenheit

FG Gross Thrust

FN. Net Thrust

FAR Part 36 Federal Air Regulations for Noise

FORMAT Fortran Matrix Abstraction Technique

FPR Fan Pressure Ratio

fps Feet per Second

g Acceleration of Gravity

GE General Electric

gm Gram

HP Horsepower

HPC High Pressure Compressor

HPT High Pressure Turbine

HR Hour

in Inches

J Joules

OK  Temperature-Kelvin

k Kilo

KEAS Knots Equivalent Air Speed
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kg Kilograms

km Kilometers

kW Kilowatts

L Lift

LB. Pounds

L/D Lift to Drag Ratio

LP Low Pressure

m meters

M Mach Number

MALS Matrix Aeroelastic Loads System

MAPES Mass Properties Estimation System

N Newtons

NASA National Aeronautics and Space Administration

N.MI. n.mi. Nautical Miles

P&WA Pratt and Whitney Aircraft

PNdB Perceived Noise-Decibels

PNL Perceived Noise Level

PPS Pounds per Second

Pamb Ambient Pressure

P Sea Level Pressure, 2116.2 LB/FT 2 (10.1325 N/cm2)
0

Pto Freestream Total Pressure

Pt2 Average Compressor Face Total Pressure

Pt2/Pto Inlet Total Pressure Recovery

q Freestream Dynamic Pressure, 1/2eV2

sec Seconds

SFC Specific Fuel Consumption

SL Sea Level

SLS Sea Level Static
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Std Standard

TF Turbofan

TIT Turbine Inlet Temperature

TO Turbojet

V Velocity

Vj Jet Velocity

T41 GE Design Rotor Inlet Temperature

Tamb Static Temperature

To  Sea Level Static Temperature, 518.7*R (288.16°K)

Tt2  Inlet Total Temperature

VCE Variable Cycle Engine

W Weight

Wa Engine Airflow

WAT2 Corrected Inlet Airflow

Wf Engine Fuel Flow

Xa.c. Change in Aerodynamic Center Location

Inches

% Percent

id amb Pressure Ratio, Pamb/Po

or t2 Pressure Ratio, Pt2/Po

a t2 Temperature Ratio, Tt2/To

E/R
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INTRODUCTION

During 1973, the Douglas Aircraft Company (DAC), McDonnell Douglas Corporation

conducted technology assessment studies in support of the NASA program of providing

an updated technology base from which an advanced supersonic cruise aircraft can

be produced with a high probability of success. The initial phase included an

assessment of gains available through application of advanced technologies in

aerodynamics, propulsion, acoustics, structures, materials, and active controls.

The second phase encompassed an assessment of the potential market and range

requirements as well as economic factors including payload, speed, airline

operating costs, and airline.profitability. A third phase consisted of identify-

ing and completing the conceptual design of a baseline aircraft which could be

used to assess technology requirements in detail. These studies culminated with

a major technology assessment detailing which technology achievements the U.S.

industry and government should emphasize in the near term in order to provide a

proven technology base for program initiation.

The results of the above noted studies and technology assessments are reported

in a NASA contract study report Douglas MDC J4394 (Volumes I thru IV), "Studies

of the Impact of Advanced Technologies Applied to Supersonic Transport Aircraft",

dated September, 1973.

During the period of the above noted studies, the major U.S. engine manufacturers

were engaged in NASA funded studies to define conceptual engines for application

to an efficient and quiet advanced supersonic cruise aircraft. The engine types

studied included the dry turbojet, afterburning turbojet, duct heating turbofan,

afterburning turbofan, and variable cycle engines. Through initial screening of

these data, DAC concluded that the dry turbojet was the most practical and

efficient engine for the time period considered, although considerable noise sup-

pression was required to make it acceptable. It provided the lowest operating cost

airplane design. This became the DAC baseline airplane configuration.

xi



Subsequent to this baseline definition, additional NASA funded engine cycle

refinement studies by the engine manufacturers have been made available to the

airframe manufacturers. Some of these engine designs offered potential advantages

over the dry turbojet, however, a reasonable assessment of engine comparisons

for an advanced supersonic cruise vehicle cannot be confidently done without

detail analysis and technical integration with an airframe. Since development

of an engine seems to be the pacing item for any new supersonic transport program,

it is most important to define the correct cycle at the earliest possible date.

With close coordination between DAC and the engine manufacturers such definition

can be accomplished. DAC undertook the studies described herein with the under-

standing that the engine companies most promising concepts would be evaluated,

their data used exclusively, and their maximum technology projections incorpor-

ated at face value. DAC provided the design team and expertise to accomplish

the complex engine/airframe integration tasks including sizing each engine and

doing a sophisticated airplane integration.

The effort described in this report includes the analysis and synthesis leading

to the selection and integration of a "best" to date available engine from each

of the turbojet, duct heating turbofan and variable cycle engine families. The

resulting performance and acoustics data are presented as compared with the

earlier established DAC conceptual baseline configuration.
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SUMMARY

Engine/airframe compatibility studies have been completed utilizing the DAC

advanced supersonic transport point design as the baseline for comparison. After

analysis of many options, a specific engine design was selected for each of

three types of engine cycles and a careful engine airframe integration study

completed for each relative to the point design airplane. The engines selected

for detail study are as follows:

o Mini-bypass turbojet the GE P7 engine

o Duct heating turbofan the P&WA 501D engine

0 Valved variable cycle the P&WA 302B engine

These engines were selected as the best available within the time frame of this

study and are reported on as offered without any technology normalizing between

supplying engine companies or within a specific company.

This effort has been accomplished under NASA contract No. 1-13229. This report

fulfills the requirement for a final summary report on this effort.

These studies entail a preliminary design process which integrates the technical

variations necessary to size the candidate engines, define the nacelle and

airplane geometry, determine new aerodynamic, propulsion and weight efficiencies,

and then assess the resulting performance and acoustics characteristics as

compared with the base point design airplane [750,000 lb. (340,194 kg) takeoff

groww weight, 10,000 ft.2 (929m2 ) wing area, and 273 passengers]. The initial

engine sizing constraint used for the study is that each study engine produce

a takeoff thrust at 0.3 Mach equivalent to the reference airplane engine

with sideline and takeoff/cutback noise not to exceed FAR Part 36. This sizing

is later validated by determining the engine size which provides best range.
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The method used in the acoustics evaluation of the engines during the study

is to calculate the unsuppressed source noise knowing the engine details plus

the gas flow data provided for the particular engine operating condition.

These inputs are based on engine cycle data supplied by the engine manufacturers,

as part of their contract efforts with NASA Lewis. Initial jet noise suppression

values applied to the unsuppressed jet noise levels are based on suppressor

characteristics supplied by each engine manufacturer for his engine cycle. Later

information from one engine manufacturer indicated a reduction in suppression

levels based on recent test data corrected for forward flight effects. As a

result, information is included considering the DAC baseline configuration

nozzle/suppressor/reverser exhaust system, including effects of forward flight on

that particular engine.

It is estimated that the approach noise levels are of the same order of magni-

tude as those for the baseline configuration and less than FAR Part 36 requirements.

The technical analysis, configuration descriptions, and study results are pre-

sented in subsequent sections of this report by technology or multi-technology

area of responsibility for each of the three specific engines studied.

A summary chart illustrating the resulting sizes required for the various engines

studied is presented in Figure A-1. A summary of takeoff performance is shown

in Table A-1, and a noise summary is provided in Table A-2. Specific fuel

consumption data are summarized in Table A-3 and relative ranges in Figure A-2.

The variation in operators' weight, L/D and range with engine size for the study

engines is summarized in Figure A-3. The engine sizes identified in Figure A-3

are the minimum sized engines meeting the initial sizing constraints. The mini-

bypass turbojet shows near-optimum range. The duct heating turbofan cannot be

reduced in size since the temperature of the fan stream impacting the suppressor
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BASELINE TURBOJET ENGINE
AIRFLOW 773 LB/SEC (351 kg/SEC)

WEIGHT (ENGINE AND NOZZLE) 16,982 LB (7679 kg)
S--L__ LENGTH (INTAKE FACE TO NOZZLE) 438.5 IN. (11.1 m)

MAX DIAMETER 97.0 IN. (2.5 m)
SLS THRUST 73,200 LB (326 kN)

MINI-BYPASS ENGINE
AIRFLOW 782 LB/SEC (355 kg/SEC)

WEIGHT (ENGINE AND NOZZLE) 14,413 LB (6538 kg)
LENGTH (INTAKE FACE TO NOZZLE) 359.5 IN. (9.1 m)
MAX DIAMETER 81.0 IN. (2.06 m)
SLS THRUST 74,700 LB (332 kN)

DUCT HEATING TURBOFAN ENGINE
AIRFLOW 875 LB/SEC (397 kg/SEC)

- WEIGHT (ENGINE AND NOZZLE) 12,200 LB (5543 kg)
LENGTH (INTAKE FACE TO NOZZLE) 358.5 IN. (9.1 m)
MAX DIAMETER 86.8 IN. (2.2 m)
SLS THRUST 70,000 LB (314.5 kN)

VARIABLE CYCLE ENGINE 302B
ED7 AIRFLOW 1003 LB/SEC (455 kg/SEC)

S- II - WEIGHT (ENGINE AND NOZZLE) 19,575 LB (8879 kg)
LENGTH (INTAKE FACE TO NOZZLE) 496.89 IN. (12.6 m)
MAX DIAMETER 100.23 IN. (2.5 m)
SLS THRUST 58,050 LB (258 kN)

FIGURE A-i. ENGINE SUMMARY



TABLE A-1
TAKEOFF SUMMARY

REFERENCE
TURBOJET MINI-BYPASS DH/TF VCE

-5A -5B -5C -5D

FIELD LENGTH (FT) 10,700 (3261 m) 10,850 (3307 m) 11,200 (3383 m) 11,000 (3350 m)

HEIGHT AT 3.5 N MI (FT) 1,256 (383 m) 1,292 (394 m) 1,268 (386 m) 1,225 (373 m)



TABLE A-2

NOISE SUMMARY

FAR PART 36 NOISE LEVELS/FAR PART 36 NOISE REQUIREMENTS, EPNdB

ENGINE TYPE SIDELINE CUTBACK

DAC DRY TURBOJET (-5A) 104/-4 105/-3

GE P7 WITH 15 EPNdB SUPPRESSOR 102/-6 107/-1

GE P7 WITH 12 EPNdB SUPPRESSOR (-5B) 105/-3 110/+2

GE P7 WITH DAC SUPPRESSOR 106/-2 110/+2

DUCT HEATING TURBOFAN (-5C) 108/0 108/0

VARIABLE CYCLE 302B (-5D) 107/-1 106/-2



TABLE A-3
ENGINE SFC SUMMARY

REFERENCE
TURBOJET P-7 501D 302B

CLIMB SFC, UNINSTALLED (1.57M, 40K FT) 1.165 1.182 1.350 1.380

CLIMB SFC, INSTALLED (1.57M, 40K FT) 1.258 1.227 1.546 1.593

SUBSONIC CRUISE, UNINSTALLED (0.93M, 30K FT) 1.150 1.075 1.050 1.050

SUBSONIC CRUISE, INSTALLED (0.93M, 30K FT) 1.420 1.195 1.320 1.300

SUPERSONIC CRUISE, UNINSTALLED (2.2M, AVG CR ALT) 1.270 1.270 1.455 1.350

SUPERSONIC CRUISE, INSTALLED (2.2M, AVG CR ALT) 1.376 1.348 1.644 1.496

HOLD, UNINSTALLED (0.55M, 15K FT) 1.350 1.165 0.980 0.960

HOLD, INSTALLED (0.55M, 15K FT) 1.440 1.229 1.110 1.130
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is limiting. The VCE engine is sized at its maximum takeoff thrust, unthrottled,

with no suppressor, and therefore cannot be sized smaller.

All engines studied in this report are stated by the engine manufacturers to be

technically capable of design initiation in the 1978-80 time period. With a

normal development period, any selected engine would not permit initial commercial

operations until the late 1980's, which is probably later than desired for an

advanced U.S. supersonic transport.
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CONCLUSIONS

The following summarizes the significant conclusions from these studies:

1. The engine data supplied by the engine manufacturers as part of the recent

NASA study contracts offer significant performance improvements for an

advanced supersonic cruise aircraft than was available one year ago. More

range and slightly reduced noise are now shown to be possible.

2. If one considers FAR Part 36 or FAR Part 36 minus two EPNdB as the AST

noise requirements, then the mini-bypass turbojet cycle employing a plug

nozzle/multi-chute suppressor exhaust system with a high level of jet noise

suppression becomes the preferred AST engine based upon improved range

performance. This selection is valid even considering degradation in

effectiveness of this suppressor type, or by substitution of a DAC designed

ejector nozzle/multi-chute suppressor/reverser exhaust system which is

estimated to have improved performance but higher weight and drag.

3. The duct heating turbofan cycle at approximately FAR Part 36 or FAR 36 minus

two EPNdB noise levels offers approximately the same range as the baseline

dry turbojet airplane. It has the advantage of relying on lower levels

of noise suppression and as such may offer improved potential for further

noise reductions as technology improves. Also, it is less sensitive to

performance degradation for missions with subsonic legs. This cycle warrants

further evaluation.

4. The dual valve variable cycle engines all result in range losses as compared

to the baseline airplane and appear to warrant no further evaluation.

5. Data received from the engine companies since engine selections were

finalized for this study indicate that at least two new, improved variable

cycle engines are now defined and ready for evaluation. Preliminary indica-

tions are that they are much improved over the dual valve VCE. The specific

engines are the P&WA variable stream control engine and the GE double bypass

dual cycle engine.
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6. The figure-of-merit, range, as used in this study.is satisfactory, however,

other considerations are weighed carefully when airlines make engine

selections. These include items such as timing, initial cost, operating

cost, reliability, maintainability, experience, commonality, and safety.

Such evaluations are beyond the scope of this study but need to be considered

when applying these conclusions to a U.S. supersonic transport program.

7. Engine evaluations relative to suitability for mission performance must

include detail installation design as detail design can have significant

impact on the final result. Installation design, utilizing expertise

unique to aircraft manufacturers, is required to insure the optimum, or

best compromise, integrated propulsion system. Such items as propulsion

control, cooling, integrated nozzle/reverser/suppressor, nacelle shape,

and nacelle location must be addressed in close coordination with the

engine companies. Only through analyses such as these can the engine be

adequately evaluated as uninstalled data comparisons will not reveal the

best configuration. Therefore, engine evaluations and eventual selections

should include the mission performance of the integrated airframe/propulsion

systems.
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RECOMMENDATIONS

1. An improved version of the duct heating turbofan designated the variable

stream control engine with significantly improved SFC for supersonic cruise

should be evaluated on the baseline airplane.

2. A dual cycle, double-bypass concept with low jet exhaust noise for takeoff and

low SFC for supersonic cruise should be evaluated in the baseline airplane.

3. The development testing of the DAC ejector/suppressor should be carried on

in parallel with that for the plug nozzle/multi-chute suppressor in support

of the mini-bypass engine evaluation.

4. A concurrent airplane evaluation study is recommended for advanced engine

cycles as the engine concept design progresses. This will insure that

realistic detail airplane installation design impacts will be accounted for

in the evolving engine design.

5. The airframe manufacturer should contract directly with.the major overseas

carriers to evaluate credibility of engine selection parameters.
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AIRPLANE DEFINITION - BASELINE

The baseline configuration used for the present studies is a refined version

of the final conceptual design resulting from the 1973 NASA technology studies

(Report Douglas MDC J4394). Detailed analyses of that design revealed that

the minimal wing outer panel thickness ratio, the location of maximum thickness,

and the small depth available at the rear spar of the modified arrow wing pro-

duced a configuration which was not structurally efficient. Undesirably large

wing tip twists and deflections were predicted and flutter speeds were less

than required. A substantial weight penalty was necessary to alleviate the

aeroelastic/flutter condition.

Trade studies were subsequently undertaken to alleviate these structural

problems. An engine location study showed that moving the engines forward

reduced the overhanging moment, increased the effective nacelle-pylon stiffness

and reduced the overall weight of the wing-nacelle-pylon combination. Moving

the inboard engine forward to the same chordwise station as the outboard had

no significant effect on wave drag, but moving either or both engines forward

of this location produced unacceptable values of wave drag. The optimum chord-

wise location of maximum thickness was evaluated since a rearward movement pro-

duced an increased depth at the rear spar. The wave drag penalties of various

configurations were assessed while maintaining sufficient volume to contain

the landing gear. The most efficient configuration selected holds the maximum

thickness ratio constant at 2.25% between 60% and 75% of the chord at the root,

constant at 3% between 40% and 65% of the chord at the trailing edge break (31%

semi-span), and at 60% of the chord from the leading edge break (63.5% semi-span)

to the tip. For these modifications, the maximum thickness ratio of the outer

panel (63.5% semi-span to tip) was then varied from 2% to 4% and overall

efficiency evaluated by minimizing the sum of the wing structural weight and
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the drag equivalent weight as shown in Figure 1-1. Based on these results,

an outer panel thickness ratio of 3% was selected. The structural and aero-

dynamic parameters were analytically derived using the Structural 
Optimization

FORMAT subroutine program and the wave drag option of the Arbitrary Body

program. Flutter analysis was included and no fuel was placed in the outboard

wing panels. The L/D decrement for optimizing the design while solving the

structural problems was 0.43.

From the weights standpoint the baseline configuration (-5A) is a derivative 
of

Model D3230-2.2-4 (-4). The -4 configuration was evaluated in depth during

the 1973 NASA technology studies. Differences between the -4 and -5A consist

of nominal increases in gross weight and wing area, along with minor changes

in wing, fuselage and vertical tail geometry. Engine packaging and locations

have also been changed. However, the similarities are such that much of the

weight information generated for the -4 is adaptable to the -5A 
configuration.

Weights for both the -4 and -5A are based on methodologies 
developed from

previous commercial and military programs. Primary among these is a computer-

ized mass properties estimation system designed MAPES. This system utilizes

300 inputs, consisting of loads, criteria, geometry, etc., to generate a 400

component structure and systems weight breakdown in a MIL-STD-1374 
format.

The MAPES system was initially developed to evaluate subsonic transport air-

craft, and at this time, approximately 63 percent of the program output is

valid for supersonic aircraft. The exceptions are the wing box structure and

nacelle inlet.

The weight of the -5A box structure is estimated using a multi-station analysis

methodology developed for low aspect ratio wings, utilizing finite element
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analyses verified by structural design layouts. Details of the finite element

analyses are discussed in the Structural Analysis paragraph of Section 2.

Inlet weights are developed from inhouse design studies. Variations from

point designs are effected using weight relationships, presented in Technical

Report SEG-TR-67-1 (1), as a guide. Engine and exhaust system weights for all

configurations are based on engine manufacturer supplied weight data. The

weight summary for the baseline configuration is shown in Table 1-1. Also

included are the increments for aeroelasticity and flutter.

The three-view for the baseline model D3230-2.2-5A (hereafter referred to as

the -5A) is shown in Figure 1-2. This constitutes a realistic base from

which individual engine variations could be readily evaluated during the

course of this study.

(1) E. L. Crosthwait, I. G. Kennon, Jr. and H. L. Roland, Preliminary Design

Methodology for Air Induction Systems, Technical Report, SEG-TR-67-1,
January, 1967
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TABLE 1-1

BASELINE CONFIGURATION (-5A) WEIGHT SUMMARY

ENGLISH METRIC
ITEM UNITS UNITS

WEIGHTS: LB Ikg

WING 75,347 34,177

H-TA IL 3,960 1,796

V-TAI L 3,807 1,727

FUSELAGE 47,713 21,642

LANDING GEAR 36,792 16,689

FLIGHT CONTROLS 9,115 4,134

NACELLE/IN LET 14,730 6,681

PROPULSION (LESS FUEL SYSTEM) 70,190 31,838

FUEL SYSTEM 3,820 1,733

EMERGENCY POWER UNIT 950 431

INSTRUMENTS 1,227 557

HYDRAULICS 5,684 2,578

PNEUMATICS 1,332 604

ELECTRICAL 4,850 2,200

NAVIGATION AND COMMUNICATION SYSTEM 2,756 1,250

FURNISHINGS 24,478 11,103

AIR CONDITIONING 4,854 2,202

ICE PROTECTION 489 222

HANDLING PROVISIONS 90 41

PENALTY FLUTTER AND AE ROE LASTICITY 2,860 1,297

STRUCTURAL WEIGHT INCREMENT - -

MANUFACTURERS EMPTY WEIGHT 315,044 142,902

OPERATIONAL ITEMS 8,096 3,672

OPERATIONAL EMPTY WEIGHT 323,140 146,574
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ENGINE DEFINITION - BASELINE

The engine defined for the baseline airplane is based on data obtained from

the engine manufacturers during the 1973 NASA engine contract studies. From

a screening of these data for the dry turbojet, afterburner turbojet, duct

heating turbofan, and several valved variable cycle engines it had been con-

cluded that the dry turbojet incorporating 1975 technology was the most pro-

mising from the standpoint of providing a minimum operating cost design. A

conceptual turbojet engine was, therefore, sized to meet FAR Part 36 noise

constraints and an in-house engine deck was derived and utilized in the

determination of airplane performance.

The engine size is 773 lb/sec (351 kg/sec) inlet corrected airflow at maximum

combustor exit temperature at sea level Std. + 180F (100C) day static takeoff

operation. The design cycle characteristics and ratings are shown in Table 1-2.

The engine exhaust system is a convergent-divergent ejector nozzle, incorporating

a suppressor stowed in the nozzle within the ejector shroud and utilizing

trailing edge buckets as the exit area control and reverser. A sketch of the

engine is shown in Figure 1-3. The installed engine is shown in Figures 1-4

and 1-5.

Engine weights, dimensions, scaling equations and cost data are presented in

Table 1-2. Cost data are based on P&WA cost information provided as part of

their Advanced Supersonic Propulsion System Technology studies conducted under

contract to NASA Lewis in 1973. Costs have been escalated to 1973 by DAC

based on 1972 dollar values provided in the engine manufacturers' study.
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TABLE 1-2

BASELINE TURBOJET
ENGINE CHARACTERISTICS SUMMARY

773 LB/SEC (351 kg/SEC) RATED AIRFLOW

DESIGN CYCLE CHARACTERISTICS DIMENSIONS

CYCLE PRESSURE RATIO 18:1 ENGINE INLET GAS

COMBUSTOR EXIT TEMP (T.O.) 2600oF (17000 K) FLOW PATH DIAMETER - IN. 66.4

(MAX CLIMB) 2500oF (1644 0 K) (m) (1.687)

(MAX CRUISE) 24000 F (15890 K) ENGINE MAX DIAMETER - IN. 97.0
(m) (2.464)

TAKEOFF RATINGS [STD DAY + 18oF (100 C)] HUB-TO-TIP RATIO

MAXIMUM THRUST (SLS) - LB 73,173 (AT PLANE OF ATTACH FLANGES) 0.42

(kN) (325.49) LENGTH - INLET

MAXIMUM THRUST (SL, 0.3M, UNINSTALLED) - LB 66,637 FLANGE TO EXHAUST PLANE - IN. 358.4

(kN) (296.41) (m) (9.103)

THRUST AT 1500oF EGT (SL, 0.3M UNINSTALLED) - LB 58,585 SCALING FACTORS
(kN) (260.60) WT 1WAT2.16

p ~WEIGHT -=WT- 7

WEIGHT WTo0  773

ENGINE - LB 12,902 D /WAT2%o. 5

(kg) (5852.3) DIAMETER - =

ENGINE + NOZZLE/REVERSER/SUPPRESSOR - LB 16,982 O
(kg) (7678.5) L /WAT2\ 0 .4 3

LENGTH - - 7 3

LO 773

COST*

WITHOUT SUPPRESSOR $2.73M
WITH SUPPRESSOR $3.02M

COST = (WAT2 \0.64
SCALING FACTOR COST- 77-

COSTo 773

*BASED ON
- 1973 DOLLARS

- 1975 ENGINE TECHNOLOGY
- 3000 ENGINE PRODUCTION RUN
- PRICES INCLUDE ALL DEVELOPMENT COSTS PLUS FIVE-YEAR PRODUCT SUPPORT AFTER CERTIFICATION BASED ON ONE ENGINE MODEL
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PROPULSION SYSTEM PERFORMANCE - BASELINE

Uninstalled Performance

The uninstalled engine performance includes the effects of:

o U.S. 1962 model atmosphere

o Inlet recovery Figure 1-6

o DAC internal nozzle velocity

coefficient

o Customer compressor air bleed 0.28% of engine airflow

o Customer power extraction 200 HP (149 kW)

o Jet A Fuel, Lower Heating Value 18,400 BTU/lb. (4.34 x 10 J/kg)

o No losses for acoustical

treatment

Installed Performance Analysis

The analysis of the propulsion system performance includes the determination

of the inlet recovery and drag characteristics, and an estimation of nacelle

drag characteristics which are combined with the uninstalled engine performance

to produce the installed propulsion system performance.

The inlet performance and the nacelle analysis include an evaluation of the

following items:

o Inlet spillage drag

o Inlet bypass drag

o Engine and ECS cooling airflow drag

o Nacelle afterbody drag

o Nacelle wave drag

These characteristics are estimated based on both theoretical and empirical

methods.
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An inviscid analysis is used to define an inlet cone angle schedule to avoid

shock ingestion and the attendant high inlet total pressure distortion levels.

The same analysis provides the inviscid total pressure losses, the additive

drag component of inlet spillage drag, and the mass-flow ratio for the inlet

operating at critical conditions. The theoretical results are combined with

empirical correlations to define the inlet total pressure recovery variation

shown in Figure 1-6. Also shown in the figure is the variation of inlet

critical mass-flow ratio and the inlet cone angle schedule. It should be

noted that the first cone has been assumed to be fixed. Shown in Figure 1-7

is the mass-flow ratio for the inlet boundary layer bleed airflow. This

schedule has been derived from a correlation of inlet test results.

The engine airflow schedule for the baseline turbojet engine is shown in

Figure 1-8. The installed inlet performance for this engine is shown in

Figure 1-9. As shown by the upper graph in the figure, the inlet airflow

supply provides an adequate match with the engine airflow demand. The inlet

is sized at the design point of 2.2M. The sized capture area is 23.8 ft.2

(2.21m 2). The engine and ECS cooling airflow are based on an allowance of 2

percent of inlet capture area airflow for the environmental control system

(ECS) cooling and engine compartment ventilation and nozzle cooling.

The nacelle drag coefficient buildup is shown in the lower graph in Figure 1-9.

The inlet drag characteristics are calculated by combining the mass-flow ratio

characteristics with empirical drag coefficient correlations. For the conven-

ience of engine sizing studies, the nacelle skin friction drag is included in

the installed engine performance. The skin friction coefficients are based on

fully turbulent flat plate adiabatic wall boundary layer data with transition

at the leading edge and the resulting drag is shown in the figure. Since
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the thrust recovery of the cooling airflow is included in the nozzle thrust,

the cooling drag is equal to the full ram drag of the cooling airflow. As

indicated on the figure, the cooling drag coefficient is constant at 0.04.

The nacelle afterbody drag is dependent on the nozzle exit area and flight

Mach number. The maximum nozzle area is sized at 2.2M, maximum climb thrust.

The engine dependent boattail drag at this condition is zero. As nozzle area

decreases for lower Mach numbers and reduced power settings, the boattail

drag increases. The variations in drag coefficient relative to the design

condition along the aircraft climb path at maximum climb thrust and for sub-

sonic flight are shown in Figures 1-10 and 1-11, respectively.

The nacelle wave drag in the presence of the aircraft, including the super-

critical spillage drag and the design afterbody drag is treated as part of

the aircraft wave drag.

Performance Results

Installed propulsion system performance is generated by correcting the DAC

turbojet uninstalled engine performance data for the installation effects

described above.

The climb performance characteristics are generated along the aircraft flight

path shown in Figure 1-12. Uninstalled and installed thrust for the takeoff

power setting (EGT limited for noise) are shown in Figure 1-13. Figures 1-14

and 1-15 present the uninstalled and installed referred thrust and SFC,

respectively, for maximum climb thrust along the climb flight path. Uninstalled

and installed supersonic cruise, subsonic cruise (for alternate mission), and

hold performance are shown in Figure 1-16 through 1-18. Figure 1-19 presents

the installed characteristics used along the descent flight path.

1-20



DAC TURBOJET

STD DAY

Ac = 23.8 FT2 (2.21 m 2 )

WAT2 = 773 LB/SEC (251 kg/SEC)
0.24

0.20

I-
z

2 0.16
LL
C.

r 0.08

0.041200

0 0.4 0.8 1.2 1.6 2.0 2.4

MACH NO.

FIGURE 1-10. CLIMB AFTERBODY DRAG

1-21



DAC TURBOJET
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DAC TURBOJET
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WAT2 = 773 LB/SEC (351 kg/SEC)

ALT = 30,000 FT (9144m)
STD DAY

1.80
.18-

-- INSTALLED PERFORMANCE
1.60

.16 - --- UNINSTALLED PERFORMANCE

z
M = .95

Sn 1.40
z .14-
o -\

01

SM= 90

1.2 = .95.10 1

0.80
.08 - 0 20 40 60 80 100 20

1000 LB

I I I I I I

0 100 200 300 400 500 kN
FN/Iamb, REFERRED NET THRUST

FIGURE 1-17. SUBSONIC CRUISE PERFORMANCE

1-28



c h DAC TURBOJET

. 1.80
.18 ALT = 15,000 FT (4572m)

STD DAY

WAT2 = 773 LB/SEC ,(351-kg/SEC)

o 1.60

1- INSTALLED PERFORMANCE

S- - - UNINSTALLED PERFORMANCE

°  .14 1.-

w

( 120 =0.6

.12- M - 0.5
I- MAX CRUISE

S.10 1._00_ -

M = 0.6

M = 0.5

.80 1000 LB.08- 10 20 30 40 50 60 70 80

1 1 I I I 1 1 1 1 1 kN
40 80 120 160 200 240 280 320 360

F N/amb, REFERRED NET THRUST

FIGURE 1-18. LOITER PERFORMANCE



DAC TURBOJET

STD DAY
WAT2 = 773 LB/SEC (351 kg/SEC)

1000 LB/HR INSTALLED
80

1000 kg/HR
30

60

0
-J
L-
-J
wu 20-

u. 40
a

Luc-

w
cc 101 2

20

E

0 0

1000 LB
kN 10

40

I

u I -40 0
c -10

z

E

u. -80
-20

0.0 0.4 0.8 1.2 1.6 2.0 2.4

MACH NO.

FIGURE 1-19. IDLE PERFORMANCE

1-30



AIRPLANE PERFORMANCE - BASELINE

Characteristics are tabulated below for the -5A baseline configuration,

including the penalties for flutter/aeroelastic/drag optimization [220 n. miles

(408 km) forL/D decrement, 70 n. miles (130 km) for the increase in weight]

and basic airplane and engine data updating subsequent to the data included

in the technology study report (MDC J4394). The mission and reserve ground

rules are shown in Figure 1-20.

Takeoff Gross Weight 750,000 lb (340,194 kg)

Payload (273 Passengers) 55,965 lb (25,385 kg)

Takeoff Field Length 10,700 ft (3261 m)

Height at 3.5 n.mi. (6.5 km)

Takeoff point 1,256 ft (383 m)

Sideline Noise Level (2270 ft.) (692m) 104.4 EPNdB

Takeoff Noise Level (cutback at 3.5 n.mi.)

(6.5 km) 105.3 EPNdB

Approach Noise Level (370 ft. alt)

(122 m) 107 EPNdB

Range 3,782 n.mi. (7006 km)

Initial Cruise Altitude 55,300 ft (16.9 km)

Direct Operating Cost (1973 $) 1.84 cents/seat n.mi.

The above noise estimates are based on a nacelle configuration which features

an acoustically treated inlet (sonic for approach) and the DAC integrated

exhaust system including a jet noise suppressor consisting of a 24-lobe mixer

and an acoustically treated ejector. The suppressor area ratio of 3.0 and

precise engine operating conditions, aircraft velocity, and altitude are the

basis for these estimates. The noise levels are based on exit velocities for a

well ventilated ejector nozzle utilizing empirical loss coefficient correlations.
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The variation in range versus initial subsonic leg length is shown in Figure

1-21. For a 600 n.mile (1110 km) initial subsonic leg, the range penalty is

7 percent.
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ENGINE CYCLE SELECTION

General Analysis

During the 1973 NASA AST technology studies, the nonaugmented mini-bypass

turbojet, as offered by General Electric was shown to be one of the preferred

engine cycles for a Mach 2.2 cruise aircraft. An evaluation has been

conducted, utilizing GE data furnished per DAC request to determine relative

sensitivity to major cycle parameters and to identify the preferred mini-bypass

engine for analysis and airplane integration.

A direct comparison is made between the mini-bypass engine and the DAC non-

augmented zero bypass turbojet. The DAC engine had been developed to support

the aero sizing and mission performance analyses conducted in the 1973 NASA

technology studies. Design turbine inlet temperature of the DAC engine is

2600*F (17000 K) and its compressor pressure ratio is 18:1. A description of

this engine Is presented in Section 1.

The mini-bypass engine data utilized for this evaluation is based primarily

on a matrix of mini-bypass turbojet engines, furnished by GE per DAC request.

This engine matrix identified as GE21/J3 Study A2 (PI-P7) includes the following

cycle parameter combinations:

T (1)

Engine No. CPR 41OF (OK)

P1 18 2400 (1590)
P2 22 2400 (1590)
P3 25 2400 (1590)
P4 25 2800 (1810)
P5 18 2600 (1700)
P6 22 2600 (1700)
P7 25 2600 (1700)

The approach used for this engine evaluation was to adapt each engine to a

baseline airframe/engine configuration and determine the relative performance

T41 is defined by GE as design rotor inlet temperature, nominally 200*F

(111*K) lower than turbine inlet temperature.
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for a defined mission. Each study engine is sized and then installed in a

1973 study airplane configuration, with propulsion system weights and drags

adjusted to account for variations in engine size, weight and geometry from

the baseline engine.

The evaluation procedure utilizes trade factors that account for differences in

climb thrust, climb SFC, supersonic cruise SFC, subsonic SFC's (as defined by

reserve requirements), engine size and weight, and engine cost. A computerized

technique is used that adapts each of the study engines to the baseline air-

plane, analyzes their relative performance along the defined mission and

calculates overall relative DOC.

The thrust sizing constraint for all the engines is 48,000 lb. takeoff thrust,

suppressed, uninstalled at sea level, 0.3 Mach, 860F (300 C) day, with exhaust

jet sideline noise suppressed to FAR Part 36 levels. The GE supplied takeoff

performance data for the mini-bypass turbojets are suppressed to FAR Part 36

noise levels and include GE established suppressor losses (nominally 5 percent

in net thrust) and cutback requirements commensurate with a 1973 GE defined 10

PNdB jet noise suppressor. For reference, the takeoff performance for the DAC

turbojet reflects suppression to FAR.Part 36 noise levels, including throttle

cut to a maximum exhaust gas temperature of 15000 F (10890 K) (selected as a

suppressor material environment limit) and a suppressor loss of approximately

8 percent in net thrust, commensurate with a DAC defined 12 PNdB jet noise

suppressor.

A constraint that is considered in the evaluation procedure is maximum climb

thrust at end-of-climb/start-of-cruise. Optimum cruise altitude for start-of-

cruise is determined for minimum cruise fuel flow, based on thrust/SFC

characteristics of the individual engines. Climb performance is then evaluated
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at start-of-cruise altitude, unless optimum cruise altitude occurs above

52,000 feet (15,850 m). Climb performance is then evaluated at 52,000 feet

(15,850 m).

Minimum relative DOC is determined for each engine. In all cases, minimum

relative DOC occurs at the minimum sized engines which, for the study, are

the engines sized for the FAR Part 36 sideline suppressed takeoff thrust.

Features of the sized study engines are presented in Table 2-1.

Figure 2-1 illustrates relative DOC as a function of the primary cycle para-

meters (design rotor inlet temperature and overall compressor pressure ratio).

The minimum DOC solution is shown to favor an engine cycle with high overall

compressor pressure ratio (25) and a design rotor inlet temperature of 2600
0 F

(17000K). Higher DOC is shown for engine cycles having the combination of

low design rotor inlet temperature of 24000 F (15890 K) and high overall com-

pressor pressure ratios (22, 25). These cycles are deficient in climb thrust

and as a result are penalized by being forced to cruise at altitudes significantly

below the optimum cruise altitude. To further illustratethis deficiency,

Figure 2-2 presents specific thrust versus cycle parametersat Mach 2.12 climb

thrust. Superimposed on this figure is a shaded area encompassing the engine

cycles, or cycle parameter combinations, that are identified in Figure 2-1 as

climb thrust deficient. The identified cycles are those having low rotor inlet

temperature and high compressor pressure ratio and they are shown to have low

specific thrust at climb.
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TABLE 2-1

BYPASS TURBOJETS

GE DATA

TABLE OF FEATURES

SIZED FOR FAR 36 AT TAKEOFF PER D-3230 -2.2 -4 REQUIREMENTS

GE21/J3 STUDY A2 P1 2 3 P4  P5 P6 P7 DAC TJ

ENGINE FEATURES
18/2400 22/2400 25/2400 25/2800 18/2600 22/2600 25/2600 18/2600

CYCLE - OPR/T41*-/F (oK) (1587) (1589) (1589) (1811) (1700) (1700) (1700) (1700)

AIRFLOW - LB/SEC (kg/SEC) 773 772 792 771 772 772 773 772
(350.6) (350.2) (359.3) (349.7) (350.2) (350.2) (350.6) (350.2)

LENGTH, OVERALL - IN. (m) 354 358 371 336 346 348 345 341
(8.992) (9.093) (9.423) (8.534) (8.788) (8.839) (8.763) (8.561)

DIAMETER, MAX - IN. (m) 78 77 78 74 76 76 75 82
(1.981) (1.956) (1.981) (1.880) (1.930) (1.930) (1.905) (2.083)

WEIGHT - LB** (kg) 13,470 13,990 14,850 13,170 13,020 13,470 13,720 15,640
(6110) (6345.9) (6736) (5973.9) (5905.9) (6110) (6223.4) (7094.3)

ESTIMATED COST (1972 $M) 2.62 2.66 2.70 2.88 2.67 2.74 2.79 2.69

*T41 = DESIGN ROTOR INLET TEMPERATURE
**INCLUDES NOZZLE AND SUPPRESSOR

**'26000 F (17000 K) TURBINE INLET TEMPERATURE FOR DAC TJ



BYPASS TURBOJETS
GE DATA

ENGINES SIZED FOR FAR 36 AT TAKEOFF
PER D3230-2.2-4 REQUIREMENTS

- -- DENOTES CLIMB THRUST CRITICAL
AT END OF CLIMB

1.10
OPR

S25

SN, .DAC TURBOJET
1.0022

MINIMUM DOC
(P7 ENGINE)

" 0.90

0.80
2400 2600 2800

(1600) (1700) (1800)

DESIGN ROTOR INLET TEMPERATURE (T41) OF (OK)

FIGURE 2-1. CYCLE VARIABLE EVALUATION
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BYPASS TURBOJETS
GE DATA

MAX CLIMB THRUST
MACH 2.12
50,140 FEET (15,283m)

N \ STD + 8°C DAY
kg/SEC LB UNINSTALLED

LB
(550) - LB/SEC

55

(500) 50

50 / 87

(450) -
45 Ile

FN/WAT2 o o

(400)
40

(350) -
35

(300) -
30

FIGURE 2-2. ESTIMATED SPECIFIC THRUST AT CLIMB
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The climb thrust critical engines, however, exhibit superior SFC character-

istics. Figures 2-3, 2-4 and 2-5 show SFC versus cycle parameters at Mach 2.12

supersonic cruise, 50,140 feet (15,283 m), at Mach 0.95 subsonic cruise

35,000 feet (10,668 m) and at Mach 0.4, 1500 feet (457 m), respectively.

Superimposed on each of these figures is a shaded area representing the climb

thrust critical cycle parameter combinations identified in Figure 2-2. It is

shown that the cycles in this climb thrust critical area are those offering the

best SFC's at all three cruise flight conditions.

The performance characteristics of all the engines in the study engine matrix

are summarized in Table 2-2. It is noted that engine P7, identified in

Figure 2-1 as the cycle resulting in the lowest relative DOC solution, is the

engine with the lowest cruise SFC's that is not climb thrust critical.

For reference, the minimum relative DOC solution for the baseline configuration

is shown in Figure 2-1. The P7 shows a 4 percent reduction in relative DOC

from the DAC turbojet. This difference is attributable mainly to the greater

weight of the DAC turbojet [15,640 lb. (7,094 kg), as compared to 13,720 lb.

(6,223 kg)], and, to a lesser degree, higher SFC's at subsonic cruise and loiter.

The DAC baseline turbojet performance characteristics are summarized in

Table 2-2 for comparison with the mini-bypass engine matrix.

Conclusion

The P7 cycle was identified as the optimum mini-bypass turbojet for further

study. It is the cycle used for the in-depth mini-bypass turbojet engine/

D3230-2.2-5B airplane integration studies summarized in this report. NASA

concurred in this selection.
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BYPASS TURBOJETS
GE DATA

MAXIMUM CRUISE THRUST

MACH 2.12
50,140 FEET (15,283m)
STD + 80 C DAY

LB/HR UNINSTALLED
LB

kg/N
HR 1.34

(0.136)

1.32 i l~ll

(0.134) 
32

SFC
1.30 0

(0.132) - (7 00

(0.130) CLIMB THRUST(0.130) 

CR1.2A

2400CRITICAL AREA
r .15..... ... . .

1.26

FIGURE 2-3. ESTIMATED SFC AT SUPERSONIC CRUISE
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BYPASS TURBOJETS
GE DATA

THRUST/ENGINE = 8700 LB (38.7 kN)
MACH 0.95
35,000 FEET (10,668m)

LB/HR STD + 80 C DAY

(kg/N HR) LB UNINSTALLED

(0.110) 1.08

(0.108) - 1.06 70

SFC (0.106) 1.04 (7O

(0.104)- 1.02

00 ~ C CLIMB THRUST '

1178&i CRITICAL ARE

(0.102)- 1.00

FIGURE 2-4. ESTIMATED SFC AT SUBSONIC CRUISE
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BYPASS TURBOJETS
GE DATA

THRUST/ENGINE = 7800 LB (34.7 kN)
MACH 0.4
1500 FEET (457.2m)
STD + 80 C DAY

LB/HR UNINSTALLED
LB

kg/N 1.38
HR

(0.140)

1.36 1<

(0.138)

1.34

(0.136) -

SFC

1.32

(0.134) -

1.30

(0.132)
(0.132) -0 CLIMB THRUST ii

11iSo :i CRITICAL AREA.'

1.28 -

(0.130)

1.26

FIGURE 2-5. ESTIMATED SFC AT LOITER
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TABLE 2-2

BYPASS TURBOJETS G E DATA TABLE OF PERFORMANCE

SIZED FOR FAR 36 AT TAKEOFF PER D-3230 -2.2-4 REQUIREMENTS

**** **** DAC
GE21/J3 STUDY A2 P1 P P3 P P P4  5 P7 TJ

CYCLE - OPR/T41*-/OF (oK) 18/2400 22/2400 25/2400 25/2800 18/2600 22/2600 25/2600 18/2600***
(1589) (1589) (1589) (1811) (1700) (1700) (1700) (1700)

ENGINE PERFORMANCE**

TAKEOFF THRUST - LB (kN) 48,000 48,000 48,000 48,000 48,000 48,000 48,000 48,000
[SUPP, S.L., 3M, (213.5) (213.5) (213.5) (213.5) (213.5) (213.5) (213.5) (213.5)
860 F (30 0C) DAY]

MAX CRUISE THRUST - LB 21,080 18,700 17,860 22,580 23,000 21,610 20,190 24,165
[2.12M, 50,140 FT (15,283m)] (93.77) (83.18) (79.44) (100.44) (102.31) (96.13) (89.81) (107.49)

MAX CRUISE SFC - 1.29 1.27 1.27 1.31 1.31 1.29 1.28 1.28
LB/HR/LB (kg/HR/N) (0.132) (0.130) (0.130) (0.134) (0.134) (0.132) (0.131) (0.131)
[2.12M, 50,140 FT (15,283m)]

SUBSONIC CRUISE SFC - 1.03 1.01 1.0 1.06 1.05 1.03 1.02 1.05
LB/HR/LB (kg/HR/N) (0.105) (0.103) (0.102) (0.108) (0.107) (0.105) (0.104) (0.107)
[0.95M, 35,000 FT (10,668m)
8700 LB (38.7 kN) THRUST]

LOITER CRUISE SFC - 1.31 1.28 1.27 1.34 1.35 1.32 1.30 1.68
LB/HR/LB (kg/HR/N) (0.134) (0.131) (0.130) (0.137) (0.138) (0.135) (0.133) (0.171)
[0.4M, 1500 FT (457.2m)
7800 LB (34.7 kN) THRUST]

*T41 - DESIGN ROTOR INLET TEMPERATURE
*,*UNINSTALLED

**'26000 F (17000 K) TURBINE INLET TEMPERATURE FOR DAC tJ
****CLIMB THRUST CRITICAL



ENGINE SIZING

General Analysis

Engine data for sizing and performance are based on the GE P7 engine, identified

in the previous section as the preferred mini-bypass turbojet cycle.

An engine size is identified based on sizing criteria commensurate with the

-5A AST configuration defined in Section 1. The sizing criteria considered for

this engine are takeoff (both sideline and takeoff/cutback) for FAR Part 36

noise levels and start-of-cruise altitude. Figure 2-6 illustrates the

engine sizing logic.

First, start-of-cruise altitude is shown as a function of engine size. For

initial sizing, start-of-cruise altitude was established at 56,000 ft.

(17,069 m). However, the engine size required for start-of-cruise at this

altitude appeared excessive, over 900 lb/sec (408 kg/sec). Subsequently,

mission trade studies were conducted to observe the effect of varying engine

size on mission performance and to determine if selection of a smaller engine

size could be justified. Results of these trade studies indicate that maximum

mission range occurs at an engine size of approximately 782 lb/sec (355 kg/sec)

with a start-of-cruise altitude of 52,000 ft. (15,850 m). Therefore, using

mission range as the figure of merit, an engine size of 782 lb/sec (355 kg/sec)

has been selected.

This engine size is now examined against takeoff requirements, considering

FAR Part 36 noise levels, in-house estimated jet noise characteristics and GE

defined suppressor technology. The suppressor design point envelope shown

in Figure 2-6 is a locus of the capability of design suppressors supplied

by GE consistent with the level of technology identified with this study

activity. The suppressor off-design characteristics shown is identified

by GE as consistent with the technology level of this study activity.
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GE MINI-BYPASS
GE SUPPRESSOR DATA USED FOR SIZING

D-3230-2.2-5

ESTIMATED LB/SEC (kg/SEC)
START-OF-C RUISE
ALTITUDE 1000- -(450)

56,000 FT
(17,069 m) 900-

(400) WAT2
DES

54,000 FT
(16,459 m)

800
52,000 FT
LECTED 15,

8 5 0 m 
) -(350)

SELECTED
ENGINE
SIZE 50,000 FT

(15,240m)

20' 700

SUPPRESSOR
DESIGN A
POINT SIZING

SPOINT

TAKEOFF/CUTBACK 18F (10) SIDELINE

p , '2'7I 69 I

. 1I I I

FIGURE 2-6. ENGINE SIZING FOR TAH SHKEOFF/CRUISEELD
S2-16

1600) (700) 1800) (9001

V (ABSOLUTE) - FT/SEC (m/SEC)

FIGURE 2-6. ENGINE SIZING FOR TAKEOFF/CRUE



The selected suppressor has a design point jet velocity of 2500 ft/sec (762 m/

sec), operating off-design at 2600 ft/sec (793 m/sec) for sideline. A

schematic of the exhaust system including the selected suppressor is shown in

Figure 2-7. With the suppressor deployed, the fixed nozzle throat area is

established at the sideline condition. (A8 sizing point on Figure 2-6.)

The suppressed uninstalled thrust available at this condition is 52,000 lb/

engine (231.3 kN), equal to the takeoff thrust requirements identified for the

-5A baseline airplane. The gross thrust loss identified with this suppressor

at takeoff is approximately 4.4 percent.

DAC estimated engine exhaust jet noise suppression requirements for FAR Part 36

are shown in Figure 2-6 for sideline [2270 ft. (692 m) sideline distance, sea

level, 0.3 Mach, Std. + 180 F (10C) day]. Suppressor performance is shown to

be more than adequate, exceeding suppression requirements for FAR Part 36 by

an estimated 3 EPNdB.

Suppression requirements versus suppressor performance are further examined at

takeoff/cutback [1050 ft. (320 m) altitude, 0.3 Mach, Std. + 180F (100C) day].

At this condition, the throttle is cut back to a thrust level of 33,250 lb/

engine (147.9 kN), identified as the thrust required to meet the 4 percent

climb gradient for the -5A baseline airplane. At this condition, suppressor

performance is predicted to meet DAC estimated suppression requirements for

FAR Part 36.

The engine size of 782 lb/sec (355 kg/sec) has been selected as it combines

maximum range potential with noise levels commensurate with FAR Part 36 (with

GE identified suppressor technology of 15 PNdB). Therefore, it is the engine

size utilized for configuration integration and initial mission studies.
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FIGURE 2-7. EXHAUST SYSTEM SUPPRESSOR SCHEMATIC



Engine Definition

The engine is a twin spool, non-augmented, mini-bypass turbojet which is

designed for Mach 2.2 supersonic cruise operation and incorporates a

technology level commensurate with a 1978 go-ahead (Figure 2-8). It is sized

for an inlet corrected airflow of 782 lb/sec (355 kg/sec) at takeoff rating

for sea level static, standard day. The design cycle characteristics and

ratings are shown in Table 2-3. The exhaust system is an annular, translating

shroud, convergent divergent plug configuration. The nozzle has a variable

geometry throat for thrust modulation and a translating cylindrical shroud to

provide the internal area for expansion of the exhaust gases. Cooling of the

nozzle is provided by LP compressor discharge air. No secondary airflow is

required for cooling purposes and no provisions are incorporated to handle

secondary airflow from the intake duct. Thrust reversing is achieved by diverting

the exhaust gas flow through a series of cascades mounted in the nozzle shroud.

The jet noise suppressor acting on the exhaust stream is a 36-chute type

configuration which is positioned aft of the variable nozzle throat mechanism.

During the suppressed mode, the variable nozzle throat is collapsed to the

furthermost open position and the nozzle throat is then formed by the deployed

suppressor elements. During unsuppressed operation the suppressor is fully

stowed within the nozzle plug. A sketch of the engine is shown in Figure 2-9.

The installed engine is shown in Figure 2-10.

Engine weights, dimensions, scaling equations and cost data are presented in

Table 2-3. Cost data are based on GE cost information provided as part of

their Advanced Supersonic Propulsion System Technology studies conducted under

contract to NASA Lewis. Costs have been escalated to 1973 by DAC based on

1972 dollar values provided by the engine manufacturers' study.
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GE 21/P7

FIGURE 2-8. ENGINE SCHEMATIC



TABLE 2-3

GE MINI-BYPASS ENGINE CHARACTERISTICS SUMMARY
782 LB/SEC (355 kg/SEC) RATED AIRFLOW

DESIGN CYCLE CHARACTERISTICS DIMENSIONS

BYPASS RATIO 0.1 ENGINE INLET GAS FLOW
LP SPOOL PRESSURE RATIO 3.35 PATH DIAMETER - IN. (m) 64.5 (1.638)
LP SPOOL PRESSURE RATIO 3.35
CYCLE PRESSURE RATIO 24.7 HUB-TO-TIP RATIO (AT

T4 1* (TAKEOFF, MAX CLIMB, MAX CRUISE) 2600oF (17000 K) ROTOR INLET) 0.436
HUB-TO-TIP RATIO (AT
PLANE OF ATTACH FLANGE) 0.312

TAKEOFF RATINGS [STD DAY + 18oF (100 C) ENGINE MAX DIAMETER - IN. (m) 77.7 (1.974)

MAX THRUST (SLS) - LB 74,700 LENGTH - INLET FLANGE TO
(kN) (332.28) EXHAUST PLUG TIP - IN. (m) 283.0 (7.188)

MAX THRUST (SL, 0.3M, UNINSTALLED) - LB 70,000
(kN) (311.37) SCALING FACTORS

THRUST AT 2600-FPS (792.5 M/S)' WAT2\1.2

(SL, 0.3M, UNINSTALLED) i127 0 oF EGT) - LB 54,300 WEIGHT W2 = W1 782 /
(kN) (241.54)

(WAT2 0"5

WEIGHT DIAMETER D2 = D1 (WAT2 /

BASE ENGINE - LB (kg) 11,469 (5202.3)

NOZZLE - LB (kg) 1,764 (800.2) LENGTH L = LWAT2 05

REVERSER - LB (kg) 460 (208.7) \ 782 /

SUPPRESSOR - LB (kg) 720 (326.6) COST**

TOTAL - LB (kg) 14,413 (6537.8) WITH NOZZLE/REVERSER/SUPPRESSOR $3.04M

SCALING FACTOR

COST = COST 1 (WAT2 '.
64

*T41 IS DEFINED BY GE AS DESIGN ROTOR INLET TEMPERATURE

NOMINALLY 200oF (111 0 K) LOWER THAN TURBINE INLET TEMPERATURE

**BASED ON
- 1973 DOLLARS
- 1978 ENGINE TECHNOLOGY
- PRICES INCLUDE ALL DEVELOPMENT COSTS PLUS FIVE-YEAR PRODUCT SUPPORT AFTER CERTIFICATION BASED

ON ONE ENGINE MODEL
- 3000 ENGINE PRODUCTION RUN
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FIGURE 2.10. GE MINI-BYPASS ENGINE INSTALLATION



PROPULSION SYSTEM PERFORMANCE

Uninstalled Performance

At DAC request, GE furnished uninstalled engine performance data at Mach 2.2

with DAC airflow schedule and inlet recovery. The uninstalled engine perfor-

mance includes the effects of:

o U.S. 1962 model atmosphere

o Inlet recovery Figure 1-6

o GE supplied internal nozzle

velocity coefficient

o Customer compressor air bleed 1 lb/sec (.454 kg/sec)

o Customer power extraction 200 HP (149 kW)

o Jet A Fuel, Lower Heating 18,400 BTU/lb. (4.34 x 107 J/kg)

Value

o No losses for acoustical

treatment

Installed Performance Analysis

The analysis of the propulsion system performance of the mini-bypass P7

engine follows the same procedures used for the baseline turbojet engine

(Section 1). The inlet performance and the nacelle analysis include an evalu-

ation of the following items:

O Inlet spillage drag

O Inlet bypass drag

o Engine and ECS cooling airflow drag

o Nacelle skin friction drag

O Nacelle afterbody drag

O Nacelle wave drag
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The inlet geometry and cone schedules are the same as used for the turbojet

engine. The inlet total pressure recovery variation is shown in Figure 1-6.

Also shown in the figure is the variation of inlet critical mass-flow ratio

and the inlet cone schedule. Shown in Figure 1-7 is the mass-flow-ratio

for the inlet boundary layer bleed airflow.

The engine airflow schedule for the P7 engine is the same as for the baseline

turbojet (see Figure 1-8). The installed inlet performance for the P7 engine

is shown in Figure 2-11. As shown by the upper graph in the figure, the inlet

airflow supply provides an adequate match with the engine airflow demand. The

inlet is sized at the design point of 2.2M. The sized capture area is 24.2 ft2

(2.25 m2). The engine and ECS cooling airflow is based on an allowance of

2 percent of inlet capture area airflow for the environmental control

system (ECS) cooling and for engine compartment ventilation.

The nacelle drag coefficient buildup is shown in the lower graph in Figure 2-11.

The inlet drag characteristics are calculated by combining the mass-flow-ratio

characteristics with empirical drag coefficient correlations. For the convenience

of engine sizing studies, the nacelle skin friction drag are included in the

installed engine performance. The skin friction coefficients are based on

fully turbulent flat plate adiabatic wall boundary layer data with transition

at the leading edge and the resulting drag is shown.

The nacelle afterbody drag is dependent on the nozzle exit area, pressure ratio,

and flight Mach number. The maximum nozzle area is sized at 2.2M, maximum climb

thrust. The engine dependent boattail drag at this condition is zero. As

nozzle area decreases for lower Mach numbers and reduced power settings, the

boattail drag increases. The boattail drag identified with this area change is
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GE MINI-BYPASS
Ac = 24.2 FT 2 (2.25 m 2 )

1.0

INLET
BLEED

0.9 BYPASS--- COOLING
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AC 0.8

MASS FLOW
RATIO
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0.6
0 0.5 1.0 1.5 2.0 2.5

MACH NO.

0.08
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D

qo Ac 0
NACELLE 0.04
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COEFFICIENTSKIN FRICTION

SKIN FRICTION

0.02

BLEED

COOLING
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0 0.5 1.0 1.5 2.0 2.5

MACH NO.

FIGURE 2-11. INSTALLED INLET PERFORMANCE
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based on drag characteristics provided by GE for their convergent/divergent

plug nozzle configuration (Figure 2-12). The variations in drag coefficient

relative to the design condition along the aircraft climb path at maximum

climb thrust and for subsonic flight are shown in Figures 2-13 and 2-14.

The nacelle wave drag in the presence of the aircraft, including the super-

critical spillage drag and the design afterbody drag is treated as part

of the aircraft wave drag.

Performance Results

Installed propulsion system performance is generated by correcting the uninstal-

led engine performance data for the installation effects described above. The

climb performance characteristics are generated along the aircraft flight

path shown in Figure 1-11. Uninstalled and installed thrust for the takeoff

power setting (EGT limited for noise) are shown in Figure 2-15. Figures 2-16

and 2-17 present the uninstalled and installed referred thrust and SFC,

respectively, for maximum climb thrust along the climb flight path. Uninstalled

and installed supersonic cruise, subsonic cruise (for alternate mission), and

hold performance are shown in Figure 2-18 through 2-20. Figure 2-21 presents

the installed characteristics used along the descent flight path.
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GE MINI-BYPASS
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GE MINI-BYPASS
STD DAY
A = 24.2 FT2 (2.25 m2 )
WAT2 = 782 LB/SEC (355 kg/SEC)

0.20
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F-
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0
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FIGURE 2-13. CLIMB AFTERBODY DRAG
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GE MINI-BYPASS
STD DAY

Ac = 24.2 FT2 (2.25 m2 )
WAT2 = 782 LB/SEC (355 kg/SEC)
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GE MINI-BYPASS
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GE MINI-BYPASS
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FIGURE 2-16. CLIMB THRUST
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GE MINI-BYPASS
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FIGURE 2-17. CLIMB SFC
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GE MINI-BYPASS
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GE MINI-BYPASS ENGINE
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2-37



CONFIGURATION INTEGRATION

Engine/Nacelle Location

Installation studies of the P7 engines in the baseline airframe in four

axisymmetric nacelles have been completed. Inboard and outboard spanwise

locations are the same as the -5A to maintain the existing wing torque box

structure, disposition of control surfaces, and overall area distribution

equivalent to the -5A baseline configuration.

The locations of the engines fore and aft are dictated by consideration of

the following factors: aerodynamics requirement for intake face and maximum

nacelle diameter location; power plant reverse thrust provision and airframe

compatibility, and minimization of structural aeroelastic/flutter penalty

while maintaining adequate provisions for the engine support pylons.

Due to aircraft control surface locations in relation to reverser nozzles,

thrust can only be diverted in local areas (700) above the upper wing surface

and (1500) between the deployed flaps. (Figure 2-22.)

The engine locations, as shown on the three-view of the -5B configuration,

(Figure 2-23) satisfy the afore mentioned criteria.

Engine/Nacelle Attachment to Wing

Engine mounting to the wing is by a three point attachment. The aft mount

is on a box beam pylon cantilevered aft of the rear spar, and the two for-

ward mounts are attached to structure provided on the rear spar.

The forward right hand mount carries thrust loads, vertical loads and side

loads to the aircraft structure. The forward left hand mount transmits

thrust and vertical loads only. The rear engine mount carries vertical loads

and translates for engine expansion under operating temperatures. (Figure 2-22.)
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Axisymmetric inlets are attached to the engine casing and are isolated from

the wing structure to prevent transmission of wing deflection loads. This

avoids distortion of intake geometry and loading of engine casing.

The boundary layer diverter is integrated into the engine nacelle/wing

fairing.

Due to the decrease in weight of the P7 engine and an engine pod c.g. shift

forward as compared to the baseline turbojet, the weight savings in engine

support and airframe structure are considerable. (See weight statement.)

Other Configuration Changes

The reduced length of pod associated with the installation of the P7 engine

eliminated the engine nozzle/ground clearance problem at maximum rotation

that existed with the -5A baseline design.

Increase in ground clearance with the shorter pod, enabled the landing gear

main and nose wheel struts to be shortened by 14 inches (35.6 cm). The associated

structural benefits to this are shorter landing gear doors and a reduction

in size and weight of the tail bumper and fairing. Minimum clearance of

ground to rear fuselage on 14 degrees maximum rotation for the -5B configuration

is 15 inches (38.1 cm).
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ACOUSTIC ANALYSIS

Noise Estimates with Untreated Engines

In contrast to the use of the DAC designed integrated ejector/suppressor

exhaust system for the -5A baseline airplane, it was decided that the engine

manufacturers' sound suppressor and suppression data would be used for the

engine airframe integration study.

The GE P7 engine selected for integration analysis incorporates a plug nozzle

and a multi-element (chute type) suppressor with no ejector. GE supplied

the basic engine cycle data, suppressed jet noise estimates, and physical

characteristics for'the jet noise suppressor.

Since the GE engine jet noise estimates represent suppressed levels, DAC

elected to calculate the unsuppressed airplane noise levels first and then

apply the GE estimated suppression characteristics to determine the suppressed

noise level for use in sizing the engine (airplane). No attempt is made to

analyze or verify the GE engine jet noise estimates. GE concurs in this

approach.

The engine jet noise suppression characteristics applicable to flight were

supplied by GE as shown in Figure 2-24. These data are reported to be based

on static test results. GE assumed equal suppression in flight to that

obtained statically, reportedly based on results of a NASA flight test program.

It can be observed that GE lowered their "1973 goals" to a peak suppression

level of 15 PNdB in flight from the "1972 goals" of 18 PNdB peak suppression.

As this engine sizing study was nearing completion, information was received

from GE stating that the GE suppression goals for the plug nozzle have been

further reduced to approximately 10 PNdB in flight with no change in thrust

loss characteristics.
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GE CAPABILITIES FOR AST ENGINE CONFIGURATIONS
PEAK PNL JET SUPPRESSION RELATIVE TO CONICAL NOZZLE

* DESIGN POINT SUPPRESSION
* APPLICABLE TO FLIGHT

24 I I I I I I I " '- "I24
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JET VELOCITY: V DESIGN IN FPS

FIGURE 2-24. SOUND SUPPRESSION FOR GE MINI-BYPASS ENGINE



The unsuppressed jet noise levels estimated by Douglas for the airplane,

with GE P7 engines, are as follows: [Engine flow rate = 782 lb/sec (355 kg/

sec)].

UNSUPPRESSED TOTAL

FAR PART 36 NOISE
MEASURING STATION DISTANCE, FT.(m) EPNL, EPNdB

Sideline 2270 (slant) (747) 119.8

Takeoff/Cutback 1290 (394) 119.5

Selection of the engine size using the GE "1973 goals" for suppression is

described in detail in the engine sizing section.

Flight Effects on Noise Levels

The effects of forward motion on jet noise levels may be significant in

estimating the amount of jet noise suppression obtained in flight. The jet

noise levels measured in flight are functions of the relative jet velocity,

the aircraft altitude, the atmospheric conditions and the type of exhaust

nozzle. The flight effects for unsuppressed nozzles are described before the

suppressed nozzles are discussed.

For unsuppressed nozzles, the influence of flight on measured jet noise levels

varies with the type of exhaust nozzle installed. The most common type of

exhaust nozzle in aircraft today is the plain circular nozzle. It has been

well established that the noise level of a circular nozzle measured in flight

is less than that measured in static tests for the same jet exhaust velocity.

For example, data taken at constant jet exhaust velocity with conical nozzles

on a DC-9 aircraft show significantly lower noise levels (-"- 5 PNdB) in

flight compared to the static level. Also, NASA flight data as shown in

Figure 2-25 indicates a similar reduction in noise level for a conical nozzle.

For a plug-type nozzle, the jet noise level in flight also decreases, but
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FIGURE 2-25. FLIGHT EFFECTS OF CONICAL BASELINE AND SUPPRESSOR NOZZLES



apparently at a lower rate than the equivalent conical nozzle when both nozzles

are compared at constant jet exhaust velocity. This tendency is also shown in

some of the NASA flight test results. (1) The precise reasons for the different

response of the plug nozzles in flight are not well understood at this time.

In the case of jet noise suppressors, the noise levels measured in flight are

often less than static levels, but the reductions are usually not as large as for

unsuppressed conical nozzles. The inherent tendency of jet noise suppressors to

shift some of the noise to higher frequencies may account for this increase in

noise. NASA flight test results show a definite trend of the high frequencies in

the spectrum to exhibit higher sound pressure levels (SPL) in flight than

statically(2), (3). The reasons for the increase in noise of the high frequency

portion of the spectrum due to forward speed are not well understood at this

time. Figure 2-25 shows the relative performance of 5 suppressors tested in the

NASA program. It can be observed that all 4 test suppressors without shrouds

experienced an increase in noise level in flight. The average value of this increase

is approximately 2.3 PNdB. One suppressor with a shroud showed a noise reduction

with forward speed. It is believed that properly designed suppressors can

achieve flight performance equal to, or better than, the baseline conical nozzle.

The latest information from GE indicates a revision of the GE 1974 suppressor

status to 12 PNdB peak static suppression and 10 EPNdB peak suppression in

(1) Burley, R. R. and Karabinus, R. J., "Flyover and Static Tests to Investi-
gate External Flow Effect on Jet Noise for Non-Suppressor and Suppressor Exhaust
Nozzles", NASA TXM-68161, January, 1973.
(2) Burley, R. R. and Johns, A. L., "Flight Velocity Effects on Jet Noise of

Several Variations of a Twelve-Chute Suppressor Installed on a Plug Nozzle",
NASA TXM-2918, January, 1974.

(3) Burley, R. R. and Head, V. L., "Flight Velocity Effects on Jet Noise of
Several Variations of a 48-Tube Suppressor Installed on a Plug Nozzle", NASA
TMX-2919, January, 1974.
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flight as shown in Figure 2-26. GE has set the "1985 goal" as 12 EPNdB

peak suppression in flight relative to a circular nozzle and a gross thrust

coefficient greater than 0.91. From the NASA GE test data DAC has reviewed,

it appears that realistic values of in flight suppression would be lower than

the GE 1974 estimated status, however, the "1985 goal" could be realistic

providing an effective suppressor configuration is developed for in flight

operation.

These lowered suppression goals were significant enough to cause GE to

recommend another engine cycle, the "double-bypass dual cycle" engine

in the GE ninth monthly report to NASA, September, 1974.

The initial indication that GE was revising the peak suppression goal to a

level of 10 PNdB or less, led DAC to the consideration of an alternate DAC

exhaust nozzle configuration which Douglas believes can realize higher levels

of suppression. The nozzle selected is the DAC integrated ejector suppressor

system identical to that incorporated in the baseline configuration -5A.

Estimates with the Douglas Integrated Ejector Suppressor Exhaust System

The estimated jet noise suppression levels in a flight environment for the

baseline configuration exhaust system are as follows:

FAR Part Measuring Station Total Noise Suppression

Sideline 11.9 EPNdB

Takeoff/Cutback 10.4 EPNdB

These estimates are based on a well ventilated ejector nozzle utilizing

empirical loss coefficient correlations. It is imperative that complete,

or nearly complete, mixing be attained in practice to achieve 
maximum noise
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reduction. Tests are underway at present to verify this mixing efficiency.

Preliminary design methods are applied to estimate the exhaust system

suppression utilizing DAC calculated unsuppressed jet noise levels based on

installed engine data and the above estimated jet noise peak suppression

levels. The results indicate that the GE mini-bypass engine with the Douglas

integrated exhaust system (see Figure 1-4) can be sized to meet FAR Part 36

requirements at 773 lb/sec (351 kg/sec) inlet corrected airflow, as discussed

in the supplemental paragraph of this section.
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STRUCTURAL ANALYSIS

Structural Model

The baseline -5A structural model used in these engine-airframe studies is

shown in Figure 2-27. The model has been developed using an interactive

computer graphics program which enables the user to generate geometric and

structural data quickly and accurately. The program also enables data for

plain or numbered diagrams to be output for subsequent processing by a Gerber

plotter. The model consists of a half-fuselage from station y = 1100 (nose

gear attachment) to y = 3505 (rear spar of horizontal tail). This extensive

idealization also enables accurate stiffness data to be generated for aero-

elastic and flutter analyses. The model contains 1283 bars, 1008 panels,

3574 stresses, 3938 element forces, 3647 degrees of freedom with five

applied load conditions, and three fully stressed design iterations.

Structural Optimization

The current optimization capability for statically loaded structures consists

of a resizing subroutine, ARROW (Automated Redesign and Reanalyses for

Optimum Weight) which is part of the FORMAT analysis system. The optimization

procedure is as follows:

a. Basic structural data from the computer graphics program is input to the

FORMAT Phase I module which generates as output, matrix data required

by the subsequent analysis and resizing sequence.

b. FORMAT Phase 2 executes user-defined matrix instructions to analyze

the structure. Initial element sizes are available from previous studies

used in the development of the baseline configuration.

c. Following the analysis, the ARROW routine is exercised. The user may

specify a resizing option for defined stress and/or stiffness constraints.

The modified sizes are returned by ARROW for a further analysis. The

process continues for a number of iterations (usually between 2 and 6)

2-50



FIGURE 2-27. AST STRUCTURAL ANALYSIS MODEL - 5A
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specified by the user, or until ARROW detects that a minimum weight

structure has been achieved. For this study, each configuration

examined was resized twice to satisfy specified strength allowables.

Structural influence coefficients (SIC's) are calculated for each final

design. Two reduced sets of load vectors are specified for aeroelastic

and flutter calculations.

d. Applied Loads

(1) Aerodynamic Loads

Quasi-static aeroelastic loads and deflections are calculated, using

aerodynamic and structural influence coefficients, with the Matrix

Aeroelastic Loads System (MALS) Program. MALS is currently operational

as a module within the FORMAT system.

Aerodynamic influence coefficients (AIC's) are calculated using the

Doublet Lattice Method, the Method of Images, and the Woodward

Program. The aerodynamic idealization of the baseline configuration

is illustrated in Figure 2-28.

Structural influence coefficients are generated, as noted previously,

following the structural optimization. For initial loading estimates,

before SIC's are known, a rigid structure is assumed.

Inertia force influence coefficients are included so that trimmed

loading conditions may be obtained.

(2) Inertia Loads

Inertia loads for the baseline design are used to account for pay-

load, structure and systems, fuel and landing gear. These are
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FIGURE 2-28. STRUCTURAL ANALYSIS AERODYNAMIC LOADS MODEL - 5A
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assumed unaffected by the engine configuration changes in this

study. Fuselage pressure loadings are included.

Engine loads and locations for the configurations considered are

summarized below. Weights shown are for one quarter of the total

propulsion system, i.e., Ig weight per engine installation.

C.G.
y = 2600 Structural Model 2705 2750

(2580) Actual (2685) (2730)

Front Rear Baseline
Support Support Case -5A

and
Outboard

6369 lb. C.G. 14,681 lb. Engines
(2900 kg) 21230 lb/engine (6650 kg)

Total (9600 kg)

y = 2600 2639 2712 Mini-Bypass -5B

Inboard Engine

11889 lb. 18513 lb/engine 6624 lb. (3000 kg)
(5400 kg) Total (8400 kg)

y = 2631 0 2 670  2790 Mini-Bypass -5B

I Outboard Engine
11,889 lb. 6624 lb. (3000 kg)

Structural 2615.5 2654.5 2726Model
Actual (2631) (2670) (2740) Average

Front Support Rear Support
11889 lb. 18573 lb. 6624 lb. (3000 kg)

per engine
(5400 kg) Total

(8400 kg)
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e. Applied Load Conditions

The following loading conditions are applied to all configurations for

strength sizing:

Condition 1: Subsonic 2 1/2 g symmetric maneuver

Condition 2: Supersonic 2 1/2 g symmetric maneuver

Condition 3: Supersonic -1 g symmetric maneuver

Condition 4: 4 g vertical

Structural Analysis

The optimization of the -5B P7 engine airplane design gave an idealized

model weight of 38,310 lbs. (17,377 kg) per half airplane. This value is

then modified to account for recalculated trimmed tail-loads. The change

in applied bending moment is plotted in Figure 2-29 where it can be seen that

the main effect of trim is on the loads at the rear fuselage. The internal

bending moment at a representative rear fuselage station is calculated, and

the bending moment correction (Figure 2-29) represents an average 7-1/2 per-

cent increase. The increase in fuselage longeron sizes necessary to carry

this increased moment is calculated as 138 Ibs. (63 kg). The revised -5B

model weight is, therefore, 38310 + 138 = 38,448 lbs. (17,440 kg). This

represents a decrease of 1007 lb/side (457 kg) or approximately 2-1/2 percent

less than the -5A baseline structural model.

The newly optimized design is examined in detail to determine the contribu-

tion of various structural components to the weight difference, and to val-

idate that size changes are consistant with changes in loading conditions.

The results, with 78 percent of the weight changes analyzed, are summarized

in Table 2-4. The following conclusions are made:
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NOTES:
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FIGURE 2-29. ULTIMATE BENDING MOMENT DIAGRAM



a. Few significant changes in design loading conditions are noted when

comparing the baseline and P7 configurations. Details are given in

Table 2-4.

b. Forty-two percent of the weight decrease is found in the nacelles.

Examples of actual size changes are shown in Figure 2-30.

c. Due to the reduced relieving moment from the lighter engine, the bending

material in the region of the rear spar shows a small increase as

expected. Actual size changes are shown in Figure 2-30.

d. Wing structural changes from about 80 in. (2.03 m) forward of the rear

spar are negligible.

e. Fifty-eight percent of the weight decrease takes place in the fuselage and

wing carry-through structure. This is due to reduced fuselage bending due

to the lighter engine and is concentrated largely in the top and bottom

fuselage longerons and side shear panels. Typical variations in longeron

cross sectional areas are plotted in Figure 2-31.

f. Aeroelastic changes

(1) Aeroelastic changes in wing effectiveness ( = 

versus q and thedXa.c. (change in aerodynamic center location)

versus q are shown for the -5A base and the mini-bypass engine

configuration -5B with the structural weight removed for optimum

strength; Figure 2-32. The expected change in wing effectiveness

at maximum climb speed and M = 0.8 is considered to be negligible.

The decrease in LXa.c. requires a slight increase in horizontal

tail balancing load which is well within the aircraft capability.

(2) Analysis of the -5A design, Table 1-1, indicates that 2860 pounds

(1300 kg) more than required for strength is required for the -5A

baseline configuration to meet the aeroelastic and flutter require-
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TABLE 2-4

MODEL WEIGHT COMPARISON -5A AND -5B
(POSITIVE WEIGHT DIFFERENCE INDICATES -5A HEAVIER THAN -5B)

WEIGHT DIFFERENCE
PER HALF AIRPLANE DESIGN

(-5A - -5B) LOAD CONDITION(s) SIGNIFICANT
MINI-BYPASS CHANGES FROM

AREA OF STRUCTURE LB kg IN ORDER OF IMPORTANCE BASELINE

INBOARD NACELLE 143.7 65.1 1, 4, 2 4, 1,2
OUTBOARD NACELLE 279.8 127.0 4, 1,2 4, 2, 1
INBOARD REAR SPAR -98.8 -41.6 1,2 NONE
SPAR NO. 4 (L.G. ATTACH) NEGLIGIBLE 1 NONE
TOP SKIN, SPARS 4, 5 NEGLIGIBLE 4, 2 NONE
FUSELAGE IDEALIZED LONGERON, TOP Q. 127.6 57.8

2ND LONGERON 53.6 24.3
3RD + 4TH LONGERONS ZERO (MIN GAGE) 1,4 NONE
5TH LONGERON 103.8 47.1
6TH LONGERON (BOTTOM ( ) 72.5 32.8

TOP FUSELAGE, IDEALIZED SKIN PANEL 4.4 2.0
2ND SKIN PANEL 18.0 8.2
3RD SKIN PANEL 31.6 14.3 4, 1 NONE
4TH AND 5TH (BOTTOM) PANELS 36.0 16.3

TOTAL 779.2 352.0

NOTES: 1. TOTAL WEIGHT DIFFERENCE -5A -58= 1007 LB (455 kg)'. BREAKDOWN ABOVE ACCOUNTS FOR 78 PERCENT.
REMAINDER IS IN WING CARRY-THROUGH STRUCTURE.

2. WEIGHTS ABOVE INCLUDE 138 LB (62.5 kg) ALLOWANCE FOR MODIFIED -5B TAIL LOADS.
3. LOAD CONDITIONS: 1 = 2-1/2g SUBSONIC SYMMETRIC MANEUVER.

2 = 2-1/2g SUPERSONIC.
3 = -g SUPERSONIC
4 =4g LANDING
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KEY TO STRENGTH
OPTIMIZED LONGERON
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ments. Of this 2000 lb. (907 kg) is for aeroelasticity and 860

pounds (390 kg) is for flutter.

9g. In order to facilitate estimates of structural weight changes from vari-

ations in engine weight or location, the idealized structural model for

the -5A is modified for an 80 inch (2.03m) forward engine center of gravity

location change and an 80 inch (2.03m) aft engine center of gravity

change. Figure 4-27 shows the results of this study holding the baseline

-5A engine size and weight constant. Point 1 of Figure 4-27 is the

original base -5A structure, point 2 is the aft 80 inch (2.03m) movement,

and point 3 the 80 inch (2.03m) forward movement.

h. The mini-bypass engine studied in the structural analysis model produces

the weight increment shown in Figure 4-27 as point 4 and after correction

for the trimmed balancing tail load results in a structural optimized

weight savings of 2014 pounds (914 kg) per airplane, or 1007 pounds (457

kg) per side, shown as point 5 in Figure 4-27.

This estimated structural weight change has been modified subsequently to

a value of 1300 lb. (590 kg) savings, as indicated in Figure 4-27 and

reflects the revised center of gravity location for the mini-bypass

engine. This weight increment is included in the weight statement,

Table 2-5.

Flutter Analysis

Additional structural optimization of the configuration described above pro-

vided the Structural Influence Coefficients for flutter analysis. The flutter

analysis results are discussed in more detail in Section 4 under structural

analysis. Briefly, the flutter speed is found to be primarily responsive to

the engine weight and less responsive to small shifts in the location of the
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c.g. for the engines studied. Therefore, the two extreme weight conditions,

the lightest being the duct heating turbofan engine configuration (-5C), and

the heaviest, the variable cycle engine (-5D), were analyzed for flutter and

compared to the turbojet (-5A) baseline case. An 860 pound (390 kg)

structural weight flutter increase is predicted to be sufficient to meet the

flutter requirements for both weight extremes (see Section 4). Therefore,

since the P7 engine weight is between these two extremes, the 860 pound

(390 kg) structural weight allocated for flutter should be adequate for the

P7 engine configuration (-5B).
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WEIGHT ANALYSIS

Section 1 provides a description of the methods used in defining detail

weights for the baseline -5A. Weights in this section are calculated based

on detail analysis of drawings where the airplane changes are defined to

include the P7 engines.

Table 2-5 compares the weight of the airplane with mini-bypass engines (-5B)

to the turbojet baseline (-5A). Weight differences are limited to the wing,

fuselage, landing gear, nacelle and propulsion system. Weight impact, of the

engine change, on the remaining systems is assumed negligible.

Weight of the -5B propulsion system is 59,931 pounds (27,184 kg); 10,259

pounds (4,653 kg) less than the -5A baseline. The savings is due almost

entirely to a reduction in engine and exhaust system weight. Differences in

propulsion equipment are small. Net nacelle/inlet weight saving is 485 pounds

(220 kg), comprising a 572 pound (260 kg) reduction in engine cowling and an

87 pound (39 kg) increase in the weight of the engine inlet. Savings in

cowling weight results from a smaller engine envelope. The increase in inlet

weight is due to increased capture area.

Differences in pylon and engine support weight are not included under nacelle/

inlet weight. These differences, along with differences in the fuselage and

wing, due to changes in load, are lumped under "Structural Weight Increment".

This weight increment is supported by a structural/weight optimization

analysis, details of which are discussed in the Structural Analysis Section.

Also included in Table 2-5 are weight reductions associated with a change

in ground clearance, made possible by the smaller engine package. These

savings comprise a 657 pound (298 kg) reduction in gear weight, resulting
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TABLE 2-5
WEIGHT COMPARISON - CONFIGURATION -5B

(MINI-BYPASS) WITH -5A BASELINE (TURBOJET)
ENGLISH UNITS

WEIGHT - POUNDS

CONFIGURATION 5A 5B DIFF
TURBO-JET MINI-BYPASS

WING 75,347 75,245* -102

H-TAIL 3,960 3,960* 0

V-TAIL 3,807 3,807* 0

FUSELAGE 47,713 47,689* -24

LANDING GEAR 36,792 36,135 -657

FLIGHT CONTROLS 9,115 9,115 0

NACELLE/INLET 14,730 14,245 -485

PROPULSION (LESS FUEL SYSTEM) 70,190 59,931 -10,259

FUEL SYSTEM 3,820 3,820 0

EMERGENCY POWER UNIT 950 950 0

INSTRUMENTS 1,227 1,227 0

HYDRAULICS 5,684 5,684 0
PNEUMATICS 1,332 1,332 0

ELECTRICAL 4,850 4,850 0
NAVIGATION AND COMMUNICATIONS SYSTEM 2,756 2,756 0

FURNISHINGS 24,478 24,478 0
AIR CONDITIONING 4,854 4,854 0

ICE PROTECTION 489 489 0
HANDLING PROVISIONS 90 90 0
PENALTY-FLUTTER AND AEROELASTICITY 2,860 2,860 0

STRUCTURAL WEIGHT INCREMENT - -1,300 -1,300

MANUFACTURER'S WEIGHT EMPTY 315,044 302,217 -12,827

OPERATOR'S ITEMS 8,096 8,096 0

OPERATOR'S WEIGHT EMPTY 323,140 310,313 -12,827

*THE WEIGHT INCREMENT FOR STRENGTH ETC., FOR THESE ITEMS IS INCLUDED UNDER THE ITEM STRUCTURAL
WEIGHT INCREMENT AND LISTED SEPARATELY.
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TABLE 2-5
WEIGHT COMPARISON - CONFIGURATION -5B

(MINI-BYPASS) WITH -5A BASELINE (TURBOJET)
METRIC UNITS

WEIGHT - KILOGRAMS

CONFIGURATION 5A 5B DIFF
TURBO-JET MINI-BYPASS

WING 34,177 34,131 -46
H-TAIL 1,796 1,796 0
V-TAIL 1,727 1,727 0
FUSELAGE 21,642 21,631 -11

LANDING GEAR 16,689 16,391 -298
FLIGHT CONTROLS 4,134 4,134 0
NACELLE/IN LET 6,681 6,461 -220

PROPULSION (LESS FUEL SYSTEM) 31,838 27,185 -4653

FUEL SYSTEM 1,733 1,733 0
EMERGENCY POWER UNIT 431 431 0
INSTRUMENTS 557 557 0
HYDRAULICS 2,578 2,578 0
PN EUMATI CS 604 604 0
ELECTRICAL 2,200 2,200 0
NAVIGATION AND COMMUNICATIONS SYSTEM 1,250 1,250 0
FURNISHINGS 11,103 11,103 0
AIR CONDITIONING 2,202 2,202 0
ICE PROTECTION 222 222 0
HANDLING PROVISIONS 41 41 0
PENALTY-FLUTTER AND AEROELASTICITY 1,297 1,297 0
STRUCTURAL WEIGHT INCREMENT - - -590

MANUFACTURER'S EMPTY WEIGHT 142,902 137,084 -5818

OPERATIONAL ITEMS 3,672 3,672 0

OPERATIONAL EMPTY WEIGHT 146,574 140,756 -5818
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from a 14 inch (35.5 cm) reduction in strut length, a 102 pound (46 kg)

reduction in wing weight, and a 24 pound (11 kg) reduction in fuselage weight

because of smaller gear door areas.

The mini-bypass engine/nacelle installation is 10,744 pounds (4873 kg)

[propulsion 10,259 lb. (4,653 kg) and nacelle/inlet 485 lb. (220 kg)] lighter

than the turbojet baseline, and has a nacelle c.g. 16 inches (41 cm) further

forward compared to the baseline turbojet. This c.g. change results primarily

from installation of the shorter engine, since the mean inlet location of

both engines is at about the same location (Sta. 2500). Combining the lighter

engine installation, moved 16 inches (41 cm) forward, with the structural

weight reduction, due to reduced loads and ground clearance, moves the weight

empty c.g. of the airplane 19.6 inches (50 cm) forward.

The total saving in airplane Operating Weight Empty from the -5A configuration

is 12,827 pounds (5,818 kg).
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AIRPLANE PERFORMANCE

Aerodynamics Analysis

The trimmed lift and drag characteristics for the P7 powered -5B design are

obtained by adjusting the wave drag of the baseline turbojet powered -5A

design for the difference due to the P7 nacelles. The difference in nacelle

skin friction drag is accounted for in the installed propulsion system

performance. Results of the wave drag program indicate a reduction in super-

sonic wave drag of 3.0 counts (ACD =.00030) due to the differences in

nacelle shape and location. The characteristics used to determine'the

mission performance for the P7 powered aircraft are obtained by subtracting

this increment from the wave drag of the baseline turbojet powered design.

Performance Results

Estimated airplane performance characteristics for the P7 powered design are

presented in Figures 2-33 through 2-35 as a function of engine size. The

mission profile and reserve ground rules are the same as used for the base-

line -5A aircraft (Figure 1-20). The takeoff gross weight is held constant

at 750,000 lb. (340,194 kg) and the payload is fixed at 55,965 lb. (25,385 kg).

Figure 2-33 presents the takeoff characteristics and the height above the run-

way at 3.5 n.mi. (6.5 km) from the start of takeoff, with the throttle cut

back to meet the 4 percent all-engine-climb-gradient requirement of FAR Part 36.

The characteristics of the aircraft with the engine size selected as described

in the Engine Sizing Section are indicated on the figure and, for reference,

characteristics of the -5A baseline are also shown.

Figure 2-34 presents the variation of operator's weight empty with engine

size used for the mission performance calculations, the altitude for maximum

range factor at the start of the 2.2 M cruise, and the mission range.
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FIGURE 2-33. EFFECT OF ENGINE SIZE ON TAKEOFF PERFORMANCE
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GE MINIBYPASS ENGINES

TAKEOFF GROSS WEIGHT = 750,000 LB (340,194 kg)
1000 kg PAYLOAD = 55,965 LB (25,385 kg) - 273 PSGR1000 kg 36

160

340
X. 150 -

320

p 140
300

S1301-
280

120 26 -
260

1000 FT
km

u l 6018 6

17'
16 55

1 - 50

14-
45

N MI

4500
km

8000- SELECTED ENGINE SIZE

4000ow

z 7000 - ) BASELINE TURBOJET

3500

6000-

3000

600 700 800 8900 1000 1100 1200

LB/SEC

I I I I I I
300 350 400 450 500 550

kg/SEC
ENGINE REFERENCE AIRFLOW WAT2

FIGURE 2-34. EFFECT OF ENGINE SIZE ON MISSION PERFORMANCE

2-70



The selected engine size as indicated in the figure is the same as initially

selected in the engine sizing paragraph. Note that this size engine provides

the best range.

Figure 2-35 presents some of the details of the effect of engine size on the

optimum cruise L/D, cruise installed SFC, and the 2.2 M cruise range factor.

The data presented in the last two figures accounts for the changes with

engine size of engine and nacelle weight, and inlet and nacelle drags, but

neglects the changes in aircraft wave drag. For a ten percent change in

engine size, this effect is quite small, but, for example, with the P7 engine

airflow increased from 782 lb/sec (355 kg/sec) to 1013 lb/sec (459 kg/sec)

the wave drag increases by 1.3 counts ( CD = .00013), which further reduces

the range with that size engine by about 50 n.mi. (93 km).

The performance for the P7 powered design with the 782 lb/sec (355 kg/sec)

engine is summarized below:

Takeoff Gross Weight 750,000 lb (340,194 kg)

Payload 55,965 lb (25,385 kg)

Takeoff Field Length 10,850 ft (3,307 m)

Height at 3.5 n.mi. (6.5 km) 1,292 ft (394 m)

Takeoff Point

Range 4,308 n.mi. (7979 km)

Initial Cruise Altitude 52,213 ft (15.9 km)

Direct Operating Cost (1973 $) 1,74 cents/seat n.mi.

The effect of initial subsonic leg on the mission range is shown in Figure

2-36. With a 600 n.mi. (1112 km) subsonic leg, the range is reduced by 5 percent.
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SUPPLEMENTAL MINI-BYPASS INTEGRATION ANALYSIS

Engine/Suppression Analysis

A preliminary study has been completed to assess the effect on performance of

using the DAC exhaust system (nozzle/reverser/suppressor) in place of the GE

exhaust system. Sizing criteria for the engine is takeoff thrust

[52,000 lb. (231.3 kN) per engine, suppressed, uninstalled)], suppressor

temperature limit of 1500°F (10890K) and FAR Part 36 noise [sea level, 0.3

Mach, 2270 ft. (747 m) sideline and 1050 ft (320 m), 0.3 Mach, takeoff/cutback,

Std. + 180F (100C) day]. The acoustics data for the DAC suppressor is estimated

to be 12 PNdB in flight suppression at an exhaust velocity of 2570 ft/sec.

(782 m/sec). For this condition the assumption is made that the net thrust loss

is 8 percent. These assumptions seem realistic and future testing is expected

to confirm these levels. Utilizing these assumptions Figure 2-37 is generated.

Different suppressor capabilities and different suppressor design point

velocities have been used. With a 12 PNdB suppressor designed at 2500 ft/sec

(760 m/sec) exhaust velocity the engine size is determined to be 773 lb/sec

(350.6 kg/sec) inlet corrected airflow.

Dimensions for this engine and nacelle are shown in Figures 2-38 and 2-39.

Scaling factors as supplied by GE are used as follows:

Dimension Scaling Factors

WAT2 0.5
2 1 D 773

0.5WAT2
L2 =L1 ( 773)

yF C, 1IA PAGE BLANK NOT FILMED
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SUPPRESSOR PERFORMANCE AT TAKEOFF FOR FAR PART 36
(TRADED, SIDELINE, AND CUTBACK)
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Weight

Base Engine Weight 11311 lb. (5131 kg)

Nozzle + Reverser 2432 lb. (1103 kg)

Noise Suppressor 1607 lb. (729 kg)

TOTAL 15350 lb. (6963 kg)

Scaling Factor

Engine: W2 = W (T) 1.2

Nozzle, Reverser, Suppressor: W2 = 1 (WAT 1.16

Airplane Performance Results

The operating weight of the P7 configuration (-5B), covered in Section 2,

would have to be increased by 5000 lb. (2268 kg) if the DAC exhaust system

were used in lieu of the GE system. The nacelle must be enlarged to accom-

modate the ejector and make provisions for stowing the suppressor. After

accounting for the incremental effects of wave drag, nacelle skin friction

drag, nozzle velocity coefficient, and weight the estimated range is approxi-

mately 4000 n.miles (7410 km).

Conclusion

Considering FAR Part 36 or Part 36 minus two noise levels as AST requirements,

the mini-bypass engine remains a strong contender as a candidate engine for

the airplane. Completion of development testing is required prior to selection

of the specific suppressor type. The DAC type ejector/suppressor appears to

be the more efficient; however, the GE plug nozzle/multi-chute type even with

some degradation can be tolerated with the mini-bypass engine.
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PRELIMINARY ENGINE SCREENING STUDY

Cycle Analysis

During the 1973 NASA AST technology studies the duct heating turbofan engine,

as offered by Pratt & Whitney Aircraft (P&WA), was shown to be one of the

preferred engine cycles for a Mach 2.2 cruise aircraft. In-house cycle

studies established the desired cycle parameters and the amount of augmentation

required for a duct heating turbofan engine best suited for a Mach 2.2 cruise

design. Results of these studies are used to guide the duct heating turbofan

selection. The selected duct heating turbofan is used for evaluation in the

baseline airplane design.

The matrix of engine cycles selected for this screening study is identified as

follows:

Sea Level, 0.3 Mach Design Point

o Bypass Ratio 1.5, 2.0, 2.5

o Cycle Pressure Ratio 12, 15, 18, 21, 24

" Turbine Inlet Temperature, OF (OK) 2600 (1700), 2800 (1811) (at takeoff)

O Fan Pressure Ratio 3.3 (3 stage fan)

o Duct Temperature, OF (*K) 500 (533), 1000 (811), 1500 (1089)

The engines are sized and configured to meet takeoff thrust requirements and

FAR Part 36 sideline noise levels and verified for adequate supersonic cruise

requirements. The installed takeoff thrust required is 48,000 lb/engine

(213.5 kN/eng) [sea level, 0.3 Mach, Std. + 180F (100C) day], based on the

1973 DAC AST technology study baseline airplane requirements. For suppression,

a 5 EPNdB jet noise suppressor is assumed on the fan stream only, with no

thrust penalty as defined in the 1973 P&WA study. The primary stream is

restricted in velocity so as not to exceed 97 EPNdB sideline jet noise [sea

level, 0.3 Mach, 2100 ft. (640 m) sideline, Std. + 18'F (10C) day], thereby
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alleviating the requirement for a jet noise suppressor on the primary stream.

Figure 3-1 shows primary jet velocity as a function of bypass ratio and over-

all cycle pressure ratio for two design turbine inlet temperatures at takeoff.

For constant 97 EPNdB primary stream jet noise, bypass ratio is shown to vary

from 1.6 to 2.13 as a function of cycle pressure ratio and turbine inlet

temperature. Figure 3-2 illustrates the engine sizing logic for a representative

cycle based on engine size, P&WA sideline noise from their Phase I Task I AST

studies, 5 EPNdB fan stream suppressor and the takeoff thrust requirement of

48,000 lb/engine (213.5 kN/eng). For FAR Part 36 sideline noise the engine

size is 920 lb/sec (417.3 kg/sec) design corrected airflow with the fan stream

augmented to 10400 F (8330 K).

Cruise performance for the study matrix is examined for Mach 2.2 at 52,000 ft.

(15,850 m). The airflow schedule used to correlate cruise with takeoff

performance, shown in Figure 3-3a, closely matches that used by the engine

companies in their AST engine studies. Fan pressure ratio is fixed at 2.4 for

cruise as compared to 3.3 for takeoff, again consistent with engine company AST

data.

Cycle pressure ratio selection for cruise is influenced by consideration of a

nominal compressor discharge temperature limit of 11000F (8679(). This

temperature reflects consideration of material selection and life for the

compressor final stages and the cooling airflow requirements to the turbine.

Figure 3-3b shows that at cruise, a compression ratio of 10 correlates with

a compressor discharge temperature of 1100°F (867cK). Compression ratios of

8 and 12 are also examined to determine sensitivity of cruise thrust and SFC

to compression-ratio.
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FIGURE 3-1. DUCT HEATING TURBOFAN CYCLE SELECTION
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DUCT HEATING TURBOFAN
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FIGURE 3-2. ENGINE SIZING AT TAKEOFF FOR FAR PART 36
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DUCT HEATING TURBOFAN
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Turbine inlet temperature at max cruise power is established at 2000 F (1110K)

less than at max takeoff, consistent with AST engine rating philosophy used

at the engine companies. Fan stream augmentation up to 1500*F (10890 K) is

considered. Bypass ratio at cruise is determined to be nearly the same as at

takeoff. An appropriate correction is made for nacelle drag.

Figure 3-4a shows installed SFC versus thrust at Mach 2.2 cruise for variations

in design compression ratio of 12 to 24. Compression ratio for cruise is main-

tained at 10 and turbine inlet temperature at 24000F (15890 K). Examination of

cruise SFC at the desired engine thrust level of 16,000 to 18,000 lbs. (711.7

to 889.6 kN) shows that design compression ratio has small impact on minimum

cruise SFC, ranging from 1.58 to 1.61 lb/hr/lb (.161 to .164 kg/hr/N).

Figure 3-4b shows sensitivity of cruise performance for variations in cruise

compression ratio from 8 to 12. The effect on SFC is small, varying from 1.58

to 1.63 lb/hr/lb (.161 to .166 kg/hr/N).

Figure 3-4c shows that SFC remains virtually unchanged as max cruise turbine

inlet temperature increases from 2400 to 26000F (1589 to 1700*K).

Conclusions

The results show that duct augmentation at cruise overrides variations in

cycle parameters, thereby diminishing the criticality of cycle parameter

selection at cruise, leaving noise and mission requirements during takeoff

dominant for cycle selection.

The results show modest duct augmentation, below 1500°F (1089*K), required

for cruise. Even less augmentation is required for takeoff, 10400 F (8330K)

for FAR Part 36 sideline noise.
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DUCT HEATING TURBOFAN
52,000 FT (15,850 m) ALTITUDE 2.2 MACH STD DAY

ENGINE SIZED FOR 48,000 LB THRUST (UNINSTALLED, SUPPRESSED)
LB/HR (kgHR AND FAR 36 SIDELINE NOISE AT TAKEOFF (SL, 0.3 M, 2100 FT)

LB N (640 m) SIDELINE, STD + 180 F (100 C) DAY)
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FIGURE 3-4. IMPACT OF CYCLE PARAMETER VARIATION
ON INSTALLED CRUISE PERFORMANCE
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Results of this study were used to guide selection of a duct heating turbofan

for the airplane integration study. The engine selected, with NASA concurrence,

was the P&WA Phase II Mach 2.4 duct heating turbofan 501, reconfigured to DAC

Mach 2.2 installation requirements and identified as the 501D. A data package

on the 5010 was supplied by P&WA through their NASA-Lewis engine study contract.
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ENGINE SIZING

General Analysis

Engine data for sizing and performance are based on the P&WA duct heating

turbofan engine cycle identified as the -5010. The previous section identified

a cycle of this type as a preferred duct heating turbofan cycle selected for

further integration studies. This engine shown in Figure 3-5 is referred to

by P&WA as a variable stream control engine.

Sizing criteria for this engine is takeoff thrust [52,000 lb. (231.3 kN) per

engine, uninstalled, suppressed, no external drag], suppressor temperature limit

[1200*F (9220 K) for chute type and 1500*F (1089*K) for finger type, per

P&WA] and FAR Part 36 noise [sea level, 0.3 Mach, 2270 ft. (692 m) sideline

and 1050 ft. (320 m), 0.3 Mach, takeoff/cutback, Std. + 180F (10*C) day].

Figure 3-6 illustrates the engine sizing logic based on P&WA suppressor tempera-

ture limits, suppressor type and characteristics, engine airflow and velocity,

and four engine unsuppressed sideline noise (DAC calculations). Data are

shown for no suppressor, a chute type suppressor and a finger type suppressor

for various duct heat temperatures. P&WA suppressor loss data is used to

determine takeoff thrust required (see Figure 3-7). Schematics of the chute

and finger suppressor configurations are shown in Figure 3-8. As shown in

Figure 3-6, the minimum size solution is an 875 ib/sec (397 kg/sec) inlet

corrected airflow engine providing 54,500 lb. (242.4 kN) of thrust [52,000 lb.

(231.3 kN) suppressed] at S.L., 0.3 M, standard + 18*F (10*C) day with a 5.1

PNdB finger type suppressor on the fan stream.

At the takeoff/cutback point, 33,250 lb. (147.9 kN) of thrust, the fan stream

velocity is too low to gain benefit from the suppressor, see Figure 3-9.

Further, as shown in the figure, the unsuppressed jet noise is 107.4 to 108.9

EPNdB depending on the aircraft altitude over the 3.5 n.mi. (6.5 km) noise monitor.
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P&WA DUCT HEATING TURBOFAN
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P&WA DH/TF - 501D

SEA LEVEL, 0.3 M, 2270 FT (691.9m) SIDELINE, STD + 18oF (100 C) DAY

FN REQUIRED = 52,000 LB/ENG (231.31 kN) (UNINSTALLED, SUPPRESSED)
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FIGURE 3-6. ENGINE SIZING FOR TAKEOFF
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P&WA DUCT HEATING TURBOFAN
CHUTE AND FINGER SUPPRESSORS WITH LINED EJECTORS

DATA SOURCE: NASA/P&WA AST PROPULSION STUDY
CONTRACT NAS3-16948
ORAL PROGRESS REPORT - 20 JUNE 1974

15
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FIGURE 3-7. JET NOISE SUPPRESSOR CHARACTERISTICS



DUCT HEATING TURBOFAN

Data Source: IASA/P&UA AST Propulsion Study
Contract NIAS3-16943
Oral Progress Report - 20 June 1974
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FIGURE 3-8. P&WA EXHAUST SYSTEM/SUPPRESSOR CONCEPTS
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P&W D/H TF-501D 
0.3M, SL, STD + 180 F (100 C)
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FIGURE 3-9. IN-FLIGHT NOISE CHARACTERISTICS



For this configuration, the altitude at 3.5 n.mi. (6.5 km) is 1268 ft.

(386 m) (see Figure 3-24). This results in a noise value of 107.6 EPNdB,

and importantly, the suppressor is stowed at and beyond this point. The 875

Ib/sec (397 kg/sec) engine is the minimum size engine to meet FAR Part 36

sideline and takeoff noise requirements.

Engine Definition

The engine is a P&WA twin spool duct heating turbofan, designated the 501D,

which is designed for Mach 2.2 supersonic cruise operation and incorporates

1980 technology (Figure 3-5). It incorporates a DAC designed 2.2M inlet which

is sized for an inlet corrected airflow of 875 lb/sec (397 kg/sec) at takeoff

rating for sea level static, Std. + 180 F (10C) day. The design cycle

characteristics and ratings are shown in Table 3-1.

The nozzle for this engine is a variable area type (variable throat and exit

areas) containing an integral thrust reverser, ejector and jet noise suppres-

sor on the fan stream. Both the primary and fan duct throat areas are variable.

In an actual design a fixed primary nozzle is probably desired for design

simplicity. It is assumed by P&WA that the engine cycle could be tailored

to produce equivalent performance with a fixed primary exhaust control nozzle.

Initial layout and sizing studies utilized the P&WA recommended chute suppressor

for the -5010 engine. Design layouts revealed that this type suppressor would

not allow canting of the exhaust due to the length of the straight translating

section. Further information from P&WA revealed that the chute suppressor had

a temperature limit of 1200'F (9220 K) for the size shown. In order to raise

the limit to 15000 F (10890K), the diameter over the exhaust system would have

to increase by four inches (10.2 cm). Therefore, an evaluation was made of

alternate suppressor schemes, provided by P&WA per DAC request. On the basis
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TABLE 3-1
DUCT HEATING TURBOFAN ENGINE CHARACTERISTICS SUMMARY

875 LB/SEC (397 kg/SEC) RATED AIRFLOW

DESIGN CYCLE CHARACTERISTICS DIMENSIONS

BYPASS RATIO 2.1 ENGINE INLET GAS
FAN PRESSURE RATIO 3.3 FLOW PATH DIAMETER - IN. (m) 74.5 (1.892)
CYCLE PRESSURE RATIO 15.0 HUB-TO-TIP RATIO (AT PLANE
COMBUSTOR EXIT TEMP 2700oF (1756 0 K) OF ATTACH FLANGE) 0.315

[T.O., STD + 18oF (100 C)] ENGINE MAX DIAMETER - IN. (m) 86.8 (2.205)
2600oF (1700 0K) LENGTH - INLET FLANGE TO
[SUPERSONIC CLIMB EXHAUST PLANE - IN. (m) 251.0 (6.375)
STD + 180 F (100 C)]

SCALING FACTORS
TAKEOFF RATINGS [STD DAY + 18oF (100 C)]

WT /WAT2\1.085MAX THRUST (SLS)- LB (kN) 70,000 (311.37) WEIGHT WT WAT2 1085

MAX THRUST (SL, 0.3 M, UNINSTALLED) - WT BASE 875
LB (kN) 65,150 (289.8)

THRUST AT 1500oF (10890 K) EGT D IWAT2\ 0.5(SL, 0.3 M, UNINSTALLED) - LB (kN) 54,750 (243.54) DIAMETER
D BASE \ 875 /

WEIGHT

ENGINE - LB (kg) 9,020 (4091.5) LENGTH L WAT20.42
ENGINE/NOZZLE/REVERSER/SUPPRESSOR - L BASE 875 /

LB (kg) 12,220 (5543.0)
COST*

WITHOUT SUPPRESSOR $3.01M
WITH P&WA 5.1 PNdB SUPPRESSOR $3.18M

COST IWAT2 0.53
SCALING FACTOR =

*BASED ON: * 1973 DOLLARS COST BASE 875

* 1980 ENGINE TECHNOLOGY
* PRICES INCLUDE ALL DEVELOPMENT COSTS PLUS FIVE-YEAR PRODUCT SUPPORT AFTER CERTIFICATION,

BASED ON ONE-ENGINE MODEL
* 3000-ENGINE PRODUCTION RUN



of temperature, size, weight and installation compatibility of the various

suppressors, a finger mixer system capable of 5.1 PNdB suppression at 15000 F

(10890 K) with a net thrust loss of 4.6 percent has been selected as the base-

line suppressor concept for this engine. The jet suppressor is designed to work

on the fan stream only with the engine cycle being matched such that suppression

is not required on the primary stream. The base engine including the P&WA

nozzle is described in Figure 3-10. The installed engine is shown in Figure 3-11.

Engine weights, dimensions, scaling equations and cost data are presented in

Table 3-1. The cost data are based on P&WA cost information provided as part

of their Advanced Supersonic Propulsion System Technology Studies conducted

under contract to NASA Lewis in 1973. Costs have been escalated to 1973 by

DAC based on 1972 dollar values provided by the engine manufacturers' study.

3-19



/30.5

4, 2 96. 7

74.- 5 . i '
3E4' , 6,A , 55r-5 70.0

94. 0--/.

A/IRFLOW = 875 /s, SeC, (396. ,g/.c)

o /00 oo I, , , , I I/NCH< ES

o / 2 3 3. 5"

FIGURE 3-10. P&WA 501D D/H TURBOFAN ENGINE

7T



4.23 -- 96,7-

/oz.8 D/A.

o'-/63. 24-

875 LB/SEC AIRFLOW (396.9 kg/SEC)

o 50 /00 /50
I I METERS/

o / E 3.5

FIGURE 3-11. P&WA-501D D/H TURBOFAN ENGINE INSTALLATION



PROPULSION SYSTEM PERFORMANCE

Uninstalled Performance

At DAC request, P&WA furnished uninstalled engine performance data at Mach 2.2

with DAC airflow schedule and inlet recovery. The uninstalled performance

includes the effects of:

o U.S. 1962 model atmosphere

o Inlet recovery Figure 1-6

o P&WA supplied internal nozzle

velocity coefficient

o Customer compressor air bleed 1 lb/sec (.454 kg/sec)

o Customer power extraction 200 HP (149 kW)

O Jet A Fuel, Lower Heating Value 18,400 BTU/lb (4.34 x 107 J/kg)
o No losses for acoustical

treatment

Installed Performance Analysis

The analysis of the propulsion system performance of the duct heating engine

follows the same procedures used for the baseline turbojet engine (Section 1).

The inlet performance and the nacelle analysis include an evaluation of the

following items:

o Inlet spillage drag

o Inlet bypass drag

o Engine and ECS cooling airflow drag

O Nacelle skin friction drag

O Nacelle afterbody drag

o Nacelle wave drag
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The inlet geometry and cone schedules are the same as used for the turbojet

engine. The inlet total pressure recovery variation is shown in Figure 1-6.

Also shown in the figure is the variation of inlet critical mass-flow ratio.

Shown in Figure 1-7 is the mass-flow ratio for the inlet boundary layer bleed

airflow.

The engine airflow schedule for the duct heating turbofan engine is the same as

for the baseline turbojet (Figure 1-8). The installed inlet performance for

the -501D engine is shown in Figure 3-12. As shown by the upper graph in the

figure, the inlet airflow supply provides an adequate match with the engine

airflow demand. The inlet is sized at the design point of 2.2 M. The sized

capture area is 26.9 sq. ft. (2.50 sq. m.). The engine and ECS cooling airflow

are based on an allowance of 2 percent of inlet capture area airflow for the

environmental control system (ECS) cooling and for engine compartment ventila-

tion and nozzle cooling.

The nacelle drag-coefficient buildup is shown in the lower graph in Figure 3-12.

The inlet drag characteristics are calculated by combining the mass-flow-

ratio characteristics with empirical drag coefficient correlations. For the

convenience of engine sizing studies, the nacelle skin friction drag is included

in the installed engine performance. The skin friction coefficients are based

on fully turbulent flat plate adiabatic wall boundary layer data with transition

at the leading edge. The resulting drag is shown in Figure 3-12.

The nacelle afterbody drag is dependent on the nozzle exit area and flight

Mach number. The maximum nozzle area is sized at 2.2 M climb at maximum

augmentation. The engine dependent boattail drag at this condition is

zero. As nozzle area decreases for lower Mach numbers, and reduced power
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P&WA - 501D DH/TF
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FIGURE 3-12. INSTALLED INLET PERFORMANCE
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settings, the boattail drag increases. The boattail drag identified with

this area change is based on drag characteristics estimated for the DAC base-

line configuration. The variation in drag coefficient relative to the design

cruise drag along the aircraft climb path as a function of climb thrust and

for subsonic flight are shown in Figures 3-13 and 3-14.

The nacelle wave drag in the presence of the aircraft, including the super-

critical spillage drag and the design afterbody drag is part of the aircraft

wave drag.

Performance Results

Installed propulsion system performance is generated by correcting the uninstalled

engine performance data for the installation effects described above. The

climb performance characteristics are generated along the aircraft flight

path shown earlier in Figure 1-12. Uninstalled and installed thrust for the

takeoff power setting (EGT limited for noise) are shown in Figure 3-15.

Figures 3-16 and 3-17 show the uninstalled and installed thrust and SFC,

respectively, for maximum climb thrust along the climb flight path. Uninstalled

and installed supersonic cruise, subsonic cruise (for alternate mission), and

hold performance are shown in Figure 3-18 through 3-20. Note that the afterbody

drag associated with subsonic cruise results in a significant installation

penalty (see Figure 3-20). Figure 3-21 presents the installed characteristics

used along the descent flight path.
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P&WA - 501D DH/TF

STD DAY

A = 26.9 FT2 (2.50 m2)

WAT2 = 875 LB/SEC (397 kg/SEC)

0.20
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FIGURE 3-13. CLIMB AFTERBODY DRAG
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P&WA - 501D DH/TF

STD DAY
Ac = 26.9 FT2 (2.50 m 2)

WAT2 = 875 LB/SEC (397 kg/SEC)
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FIGURE 3-14. SUBSONIC AFTERBODY DRAG
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P&WA - 501D DH/TF

SEA LEVEL, STD + 18oF (100 C) DAY
WAT2 = 875 LB/SEC (397 kg/SEC)

TDUCT = 1500F (10820 K) AT 0.3M
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FIGURE 3-15. TAKEOFF PERFORMANCE
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P&WA - 501D DH/TF

STD DAY
WAT2 = 875 LB/SEC (397 kg/SEC)
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FIGURE 3-16. CLIMB THRUST
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P&WA - 501D DH/TF

M = 2.2, STD DAY
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FIGURE 3-18. SUPERSONIC CRUISE PERFORMANCE



P&WA - 501D DH/TF
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FIGURE 3-19. SUBSONIC CRUISE PERFORMANCE
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FIGURE 3-20. LOITER PERFORMANCE



P&WA - 501D DH/TF
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WAT2 = 875 LB/SEC (397 kg/SEC)
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FIGURE 3-21. IDLE PERFORMANCE
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CONFIGURATION INTEGRATION

Engine/Nacelle Location

Installation studies of the duct heating turbofan engines for the baseline

airframe in four axisymmetric nacelles have been completed. Inboard and

outboard spanwise locations remain as for the -5A and -5B configurations to

maintain existing wing torque box structure, disposition of control surfaces,

and overall area distribution equivalent to the baseline configuration. The

choice of the forward and aft location has been determined from the inputs of

the aerodynamics, structural mechanics, acoustics, and power plant groups.

With the resultant location of engine to wing, use of the 3600 reverse thrust

nozzles proposed by the engine manufacturer cannot be utilized. Thrust

reversal is only achievable in local areas (70*) above the upper wing surface

and (1500) between the deployed aircraft flap system (Figure 3-22).

The locations as shown on the three view drawing provide the best solution

to the requirements of the previously established criteria (Figure 3-23).

Engine/Nacelle Attachment to Wing

The engine is mounted on the wing by a three point attachment to the wing

structure. The aft mount is attached to a box beam pylon cantilevered aft of

the rear spar and the two forward mounts are attached to structure provided on

the wing box off the rear spar.

The forward right hand mount carries thrust loads, vertical loads and side

loads. The left hand forward mount transmits forward and vertical loads only.

The rear engine mount carries vertical loads and translates for engine growth

under operating temperatures (see Figure 3-22).
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The axisymmetric intakes are mounted to the engine casing and divorced from

the wing structure. This eliminates transmission of wing deflection loads

to the intake to prevent distortion of the intake geometry and loading of the

engine casing.

The boundary layer diverter is integrated into the engine nacelle/wing fairing.

The installed weight of the duct heating turbofan is less than either the

baseline turbojet or mini-bypass engines, which results in significant weight

savings in airframe structures.

Other Configuration Changes

The reduced length of the installed engine pods for the duct heating turbofan

engines enables the use of the shorter landing gear, reduced tail bumper

fairing, and the ground clearances established for the -5B configuration

aircraft.
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ACOUSTIC ANALYSIS

The acoustic analysis conducted for the duct heating turbofan powered aircraft

configuration consists of the calculation of estimated jet noise in support of

engine sizing studies. Engine data have been employed to estimate the jet

noise at aircraft Mach numbers and altitudes representative of the FAR Part 36

takeoff and sideline measuring conditions. After the engine size has been

determined, the flight path for the AST duct heating turbofan powered aircraft

configuration is calculated and engine cycle data at the above two conditions

defined. The standard climb profile featured a thrust cutback over the takeoff

measuring station.

The engine size has been selected at an airflow rate of 875 Ibs/sec (397 kg/sec)

in combination with a jet noise suppression in the fan duct designed to provide

a nominal 5.1 PNdB sideline suppression. Descriptions of the engine sizing

results and of the selected jet noise suppressor are given in the Engine Sizing

section.

The unsuppressed jet noise levels for the -501D engine in the baseline airplane

based on specific engine conditions on the calculated takeoff trajectory are

as follows:

FAR PART 36 UNSUPPRESSED TOTAL NOISE,

MEASURING STATION DISTANCE, FT.(m) EPNL, EPNdB

Sideline 2270 (747) 116.1*

Takeoff / cutback 1268 (386) 108.1

*Includes no allowance for extra ground attenuation

The suppressed noise levels for this configuration are estimated as described

in the Engine Sizing section.
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STRUCTURAL ANALYSIS

Strength Analysis

The -501D engine propulsion system plus nacelle weight from Table 3-2 is

66,709 lbs. (30,259 kg). This compares to 84,920 lbs. (38,519 kg) for the

baseline -5A. Therefore, the weight reduction is 9106 lbs. (4130 kg) per

side. The saving in structural weight for this decrease in propulsion weight

is 670 lbs. (304 kg) per side (point 7 minus point 6 in Figure 4-27). The 23.5

inch (60 cm) more forward location for the duct heating turbofan engine c.g.

results in an additional 400 lbs. (181 kg) per side structural weight saving

(point 6 in Figure 4-27). This totals 1070 lbs. (485 kg) per side or 2140 lbs.

(971 kg) per airplane structural weight saving.

Flutter Analysis

A flutter analysis of the -501D engine configuration (-5C), revealed that this

light weight engine was the most critical case as far as meeting the flutter

requirements (see further discussion in Section 4). The 860 lb. (390 kg)

allocation for detailed flutter optimization is anticipated to satisfy flutter

requirements for the -5010 engine (see Table 3-2).
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IEIGHT ANALYSIS

Table 3-2 compares the weight of the AST with -501D engines (-5C) to the turbo-

jet baseline (-5A). Bare engine weight of the P&WA model D/H TF-501D is 9,020 lbs.

(4091 kg) each. The nozzle, reverser and suppressor are an additional 3,200 lbs.

(1451 kg). This compares to 12,942 lbs. (5870 kg) and 4,040 lbs. (1833 kg),

respectively, for the baseline -5A. Total propulsion system weight is 51,057 lbs.

(23,159 kg), 19,133 lbs. (8679 kg) less than the turbojet baseline,8,874 lbs.

(4025 kg) less than the mini-bypass configuration -5B.

In contrast, the weight of the nacelle/inlet is 922 lbs. (418 kg) heavier than

the baseline -5A. This is a net weight change, comprised of a 751 lb. (341 kg)

reduction in the weight of engine cowling and a 1,673 lb. (759 kg) increase in

the weight of the engine inlet. The decrease in cowling weight reflects an

engine envelope approximately 32 inches (81 cm) shorter and 10 inches (25 cm)

less in diameter. The heavier inlet reflects increases in both capture area

and duct length.

The Structural Weight Increment includes differences in pylon and engine

support weight, along with differences in wing and fuselage weight, due to

changes in load. The 2,140 lbs. (971 kg) reduction (see Structural Analysis

paragraph), estimated for this increment, is based on results from structural

optimization studies of both the baseline and mini-bypass configurations.

Figure 4-27 presents the results from an engine location study of the baseline

configuration (-5A). These data, combined with the results from the structural

optimization of model -5B, provide a variation of structural weight with engine

location and installed weight. This approach, details of which are presented

in Section 4, is used to estimate the structural weight increment for both the

duct heating turbofan and variable cycle engine concepts.
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TABLE 3-2.

WEIGHT COMPARISON - CONFIGURATION 5C (DUCT
HEATER TURBOFAN) WITH 5A BASELINE (TURBOJET)

ENGLISH UNITS

WEIGHT - POUNDS

5A 5C
CONFIGURATION TURBOJET DUCT HEATER DIFF.

ITEM

WING 75,347 75,245* -102

H-TAIL 3,960 3,960*

V-TAI L 3,807 3,807*

FUSELAGE 47,713 47,689* -24

LANDING GEAR 36,792 36,135 -657

FLIGHT CONTROLS 9,115 9,115

NACELLE/INLET 14,730 15,652 +922

PROPULSION (LESS FUEL SYSTEM) 70,190 51,057 -19,133

FUEL SYSTEM 3,820 3,820 0

EMERGENCY POWER UNIT 950 950 0

INSTRUMENTS 1,227 1,227 0

HYDRAULICS 5,684 5,684 0

PNEUMATICS 1,332 1,332 0

ELECTRICAL 4,850 4,850 0

NAVIGATION AND COMMUNICATIONS SYSTEM 2,756 2,756 0

FURNISHINGS 24,478 24,478 0

AIR CONDITIONING 4,854 4,854 0

ICE PROTECTION 489 489 0

HANDLING PROVISIONS 90 90 0

PENALTY - FLUTTER AND AEROELASTICITY 2,860** 2,860** 0

STRUCTURAL WEIGHT INCREMENT -- -2,140* -2,140

MANUFACTURER'S EMPTY WEIGHT (MEW) 315,044 293,910 -21,134

OPERATIONAL ITEMS 8,096 8,096 0

OPERATIONAL EMPTY WEIGHT (OEW) 323,140 302,006 -21,134

*THE WEIGHT INCREMENT FOR STRENGTH, ETC., FOR THESE ITEMS IS INCLUDED UNDER THE ITEM STRUCTURAL
WEIGHT INCREMENT AND LISTED SEPARATELY.

**2000 LB FOR ROLL AND CONTROL EFFECTIVENESS
860 LB FOR FLUTTER OPTIMIZATION
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TABLE 3-2.

WEIGHT COMPARISON - CONFIGURATION 5C (DUCT
HEATER TURBOFAN) WITH 5A BASELINE (TURBOJET)

METRIC UNITS

WEIGHT - KILOGRAMS

5A 5C
CONFIGURATION TURBOJET DUCT HEATER DIFF.

ITEM

WING 34,177 34,131* -46
H-TAI L 1,796 1,796*
V-TAI L 1,727 1,727*
FUSELAGE 21,642 21,631* -11
LANDING GEAR 16,689 16,391 -298
FLIGHT CONTROLS 4,134 4,134
NACELLE/INLET 6,681 7,099 +418
PROPULSION (LESS FUEL SYSTEM) 31,838 23,160 -8678
FUEL SYSTEM 1,733 1,733 0
EMERGENCY POWER UNIT 431 431 0
INSTRUMENTS 557 557 0
HYDRAULICS 2,578 2,578 0
PNEUMATICS 604 604 0
ELECTRICAL 2,200 2,200 0
NAVIGATION AND COMMUNICATIONS SYSTEM 1,250 1,250 0
FURNISHINGS 11,103 11,103 0
AIR CONDITIONING 2,202 2,202 0
ICE PROTECTION 222 222 0
HANDLING PROVISIONS 41 41 0
PENALTY - FLUTTER AND AEROELASTICITY 1,297 1,297 0
STRUCTURAL WEIGHT INCREMENT -- -971* -971

MANUFACTURER'S EMPTY WEIGHT (MEW) 142,902 133,316 -9586

OPERATIONAL ITEMS 3,672 3,672 0

OPERATIONAL EMPTY WEIGHT (OEW) 146,574 136,988 -9586

*THE WEIGHT INCREMENT FOR STRENGTH, ETC., FOR THESE ITEMS IS INCLUDED UNDER THE ITEM STRUCTURAL
WEIGHT INCREMENT AND LISTED SEPARATELY.
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The decreased gear length due to the smaller engine is the same as for the mini-

bypass configuration. Corresponding savings in gear and gear door weight are

identical; 657 lbs. (298 kg) and 126 lbs. (57 kg), respectively. The weight

penalty for flutter and aeroelasticity is 2,860 lbs. (1297 kg). This penalty

is derived as a part of the structural/weight optimization analysis. Details

of this analysis are presented in Section 4.

The mean inlet location of the -5010 engines is 15.5 inches (40 cm) forward of

the turbojet baseline (Sta. 2484.5 versus Sta. 2500). This, combined with

the shorter engine package, moves the c.g. of the engine installation 23.5

inches (60 cm) forward. Combining the forward c.g. shift of the engine instal-

lation with the moment change due to the lighter weight [66,709 lbs. (30,259 kg)

versus 84,920 lbs. (38,519 kg)] moves the OEW c.g. of the airplane 30.6 inches

(78 cm) forward (the engines are located aft of the aircraft c.g.). Adding the

effect of wing, gear and fuselage weight saving, moves the OEW c.g. another

2.5 inches (6.4 cm) in the same direction, for a total forward shift of 33.1

inches (84.4 cm). Total OEW saving for the duct burning turbofan engine

configuration is 21,134 lbs. (9586 kg) relative to the -5A.
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AIRPLANE PERFORMANCE

Aerod namics Analysis

The trimmed lift and drag characteristics for the duct heating turbofan

powered aircraft are obtained by adjusting the wave drag of the baseline turbo-

jet powered aircraft for the difference due to the duct heating turbofan

nacelles. The difference in nacelle skin friction drag is accounted for in the

installed propulsion system performance. The wave drag program predicts a

reduction in supersonic wave drag of 3.61 counts (ACD =.000361) due to the

differences in nacelle shape and location. The characteristics used to

determine the mission performance for the duct heating turbofan powered air-

craft are obtained by subtracting this increment from the wave drag of the

baseline turbojet powered aircraft.

Performance Results

Estimated performance characteristics for the duct heating turbofan powered

aircraft are presented in Figures 3-24 through 3-26 as a function of engine

size. The mission profile and reserve ground rules are the same as used for

the baseline turbojet aircraft (Figure 1-20). The takeoff gross weight is

held constant at 750,000 lbs. (340,194 kg) and the payload is fixed at 55,965 lb.

(25,385 kg).

Figure 3-24 presents the takeoff characteristics and the height above the run-

way at 3.5 n.mi. (6.5 km) from the start of takeoff, with the throttle cut back

to meet the 4 percent all-engine climb gradient requirement of FAR Part 36. The

characteristics of the aircraft with the engine size selected as described

in the engine sizing paragraph are indicated on the figure. The performance

of the baseline turbojet aircraft -5A, is also shown for reference.

Figure 3-25 presents the variation of operator's weight empty with engine size

used for the mission performance calculations, the altitude for maximum range
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P&WA -501D DH/TF
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P&WA -501D DH/TF
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P&WA -501D DH/TF
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factor at the start of the 2.2 M cruise, and the mission range. The selected

engine size as indicated in the figure is identical to that specified in

the engine sizing paragraph. A smaller size indicates better range, however,

the engine cannot be reduced in size since the temperature of the fan stream

impacting the suppressor is limiting. Figure 3-26 presents some of the details

of the effect of engine size on the optimum cruise L/D, cruise installed SFC,

and the 2.2 M cruise range factor.

The data presented in the last two figures accounts for the changes with

engine size of engine and nacelle weight, and inlet and nacelle drags, but

neglects the changes in aircraft wave drag. For a ten percent change in

engine size, this effect is quite small, but can be significant for the

larger engine sizes.

The performance for the -501D powered aircraft with the 875 lb/sec (397 kg/sec)

engine is summarized below:

Takeoff Gross Weight 750,000 lbs. (340,194 kg)

Payload 55,965 lbs. (25,385 kg)

Takeoff Field Length 11,200 ft. (3,383 m)

Height at 3.5 n.mi. (6.5 km) 1,268 ft. (386 m)
Takeoff Point

Range 3,790 n.mi. (7002 km)

Initial Cruise Altitude 55,258 ft. (16.8 km)

Direct Operating Cost (1973 $) 1.94 cents/seat n.mi.

The variation in range vs. initial subsonic leg length is shown in Figure 3-27.

For a 600 n.mi. (1110 km) initial subsonic leg, the range penalty is 3 percent.
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P&WA -501D DH/TF
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ENGINE SELECTION

The supersonic transport imposes unique requirements for an engine cycle.

Ideally, this cycle would be a high bypass ratio turbofan with low jet velocity

at takeoff and landing for low jet noise, a high bypass ratio turbofan at

subsonic cruise and loiter for low SFC, a low bypass ratio turbofan or turbojet

(augmentation optional) during climb/acceleration for high thrust and a mini-

bypass turbojet during supersonic cruise for minimum SFC. To incorporate these

diverse cycle requirements in a single package, a number of engine concepts,

called variable cycle engines (VCE), are being defined by the engine manu-

facturers. This section includes analysis and airplane integration studies

to evaluate the potential of currently identified VCE concepts.

Within the time period of this study, data for three candidate variable engines

became available. These were all P&WA dual valve designs identified as the

201A, 201B and 302B. The 201A and 201B are three nozzle stream engines with

the two duct streams augmented. The 302B is a two-nozzle stream unaugmented

engine. During this period, GE did not provide a candidate variable cycle

engine.

The three candidate engines presented unique problems in determining which to

select for airplane integration. A sizing study and a preliminary airplane

integration and performance exercise has been performed for each candidate to

insure selection of the most promising for comparison with the mini-bypass

and duct heating turbofan configurations. The following paragraphs present

the results of these studies and information on the dual valve engine finally

selected.
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ENGINE SIZING

VCE 201A and 201B Sizing

The data for the augmented variable cycle engine are based on the P&WA Task VII

engine, identified as VCE 201. This engine is a dual-valve, three-nozzle

stream configuration with augmentation in the two fan streams. It is designed

for Mach 2.2 to 2.7 supersonic cruise operation (configured by DAC in this

application for Mach 2.2 supersonic cruise) and reflects P&WA technology levels

consistent with initial operational capability in the late 1980's.

The engine incorporates a high bypass mode, utilized for takeoff and subsonic

cruise, which significantly increases the engine airflow and results in an

inlet that is either oversized for the low bypass mode at supersonic cruise or

requires auxiliary inlets. Two versions of the VCE 201 engine (A and B) are

defined by P&WA to evaluate the increase of engine airflow in the low mode of

operation - a base flow, 201A, and a high flow, 201B. The airflow schedules

for these engines are shown in Figure 4-1.

The VCE'201 engine consists of several unique components in addition to those

that constitute a conventional duct heating turbofan engine. Illustrated in

Figure 4-2, these unique components are:

1. Second fan with rotating flow splitter (fan 2)

2. Forward annulus inverting valve (fwd valve)

3. Rear annulus inverting valve (rear valve)

4. Second Primary Burner (burner 2)

5. Additional single stage low pressure turbine (LPT 2)

6. Second duct heater for third nozzle stream

7. Auxiliary nozzle for third nozzle stream
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The engine is a twin-spool configuration with Fan 1, Fan 2, LPT 1 and LPT 2

all constituting the LP rotor spool. This arrangement allows the work to

drive the two fans to be distributed between these two low pressure turbines

in the most advantageous manner at each flight condition. The HP rotor spool

consists of the HP compressor (HPC), primary combustor and the HP turbine

(HPT). The engine has two duct stream augmentors as shown in Figure 4-2. The

auxiliary nozzle stream is defined with the capability of converting from a

convergent configuration for subsonic operation to a convergent-divergent

configuration for supersonic operation in the high mode. In the low mode, the

auxiliary nozzle is not utilized by the engine, therefore, in low mode opera-

tion during supersonic climb and cruise, the auxiliary nozzle can be used as

an inlet bypass.

The 201A and 201B engines offer identical performance at takeoff. Therefore,

this sizing study is applicable to both. Preliminary sizing criteria for the

engines are takeoff thrust [52,000 Ib/engine (231.3 kN), suppressed, uninstalled]

FAR Part 36 noise for sideline [sea level, 0.3 Mach, 2100 ft. (640 m), sideline,

Std. + 180F (100 C) day] and for takeoff/cutback [33,250 lbs. (147.9 kN) thrust/

engine, uninstalled, 1050 ft. (320 m) 0.3 Mach, Std. + 180 F (100C) day] and

a suppressor temperature limit of 1500*F (1089
0 K). Figure 4-3 illustrates the

engine sizing logic based on engine size, P&WA suppressor temperature limits,

P&WA supplied single engine jet noise at the sideline (supplemented with DAC-

generated four engine jet noise at the sideline) and the takeoff thrust require-

ment noted above. Data are shown for no suppressors and for finger type

suppressors on both duct streams for various duct heat temperatures. P&WA

suppressor loss data are utilized to determine the takeoff thrust required,

see Figure 3-7.
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Examination of Figure 4-3 shows that the minimum sized engine to meet FAR

Part 36 noise levels is a 1001 lb/sec (454.1 kg/sec) inlet corrected airflow

engine providing 52,000 lbs. (231.3 kN) of thrust, suppressed, and employing

1.8 EPNdB suppressors on both duct streams. Note that the 15000 F (10890 K)

suppressor temperature limit is critical for duct stream 2, duct stream I

being 300 0F (1660 K) cooler and, therefore, not a constraint. However, the

noise levels of the two duct streams are about equal, thereby requiring

equivalent suppression. The question arises as to whether this engine,

configured with two modest suppressors would indeed offer any advantage over

an engine sized so as not to require suppressors. Again referring to Figure

4-3, it is shown that an engine sized to meet FAR Part 36 noise levels without

suppressors is a 1061 lb/sec inlet corrected airflow engine.

Before proceeding with the engine size selection, noise at takeoff/cutback is

examined. Figure 4-4 illustrates four engine takeoff/cutback noise (DAC

estimated) at 1050 ft (320 m) altitude over the 3.5 n.mi. (6.5 km) monitor

point for the two takeoff-sized engines, 1001 and 1061 lb/sec (454.1 and 481.3

kg/sec) inlet design corrected airflow. At the cutback thrust requirement of

33,250 lb/engine (147.9 kN) it is shown FAR Part 36 noise levels are not

exceeded for either the 1001 lb/sec (454.1 kg/sec) or the 1061 lb/sec (481.3

kg/sec) sized engines with the unsuppressed noise being 107.1 EPNdB and 106.5

respectively. Therefore, noise at cutback is not a constraint for engine sizing.

In addressing the engine size recommended for initial studies, the question

arises as to whether the smaller 1001 lb/sec (454.1 kg/sec) engine, employing

jet noise suppressors on both duct streams, really has a physical size

advantage over the 1061 lb/sec (481.3 kg/sec) engine which requires no

suppressors at all. Table 4-1 shows the results of a trade study, comparing

4-10



122
P&WA VCE 201 A&B MAX
DUAL VALVE, AUGMENTED AUGMENTATION
1050 FT (320 m) ALTITUDE, 0.3 MACH,

120 STD + 180 F (100 C) DAY
FN REQUIRED = 33,250 LB/ENGINE (147.90 kN)

(UNINSTALLED)

DAC GENERATED NOISE
118 NO SUPPRESSORS

116

I-

-J"

o 114

106 0

112

-I

4-110

W . AUGMENTOR OFF

FAR PART 36 NOISE LIMIT"

CUTBACK THRUST REQUIRED 33,250 LB (147.90 kN)

104
(150) (200) (250) (kN)

30 35 40 45 50 55 1000 LB

SINGLE ENGINE NET THRUST

FIGURE 4-4. INFLIGHT NOISE CHARACTERISTICS

4-11



TABLE 4-1
COMPARISON OF P&WA VCE-201 ENGINE WITH AND WITHOUT SUPPRESSORS

INLET GAS
WEIGHT FLOW DIA MAXIMUM DIA LENGTH

201A 201B 201A 201B 201A 201B 201A 201B

WITH SUPPRESSION
1001 PPS SIZE (454.1 kg/SEC)

1500oF (10890 K)(FAN STREAM 2)

107.5 PNdB - 2100 FT (640m) 18592 LB 19936 LB 82.6 IN. 79 IN. 94.8 IN. 94.8 IN. 396 IN. 419 IN.
SIDELINE - SINGLE ENG (2.098 m) (2.007 m)

TWO FAN DUCT SUPPRESSORS +1500 LB +1500 LB +4 IN. +4 IN. +40 IN. +40 IN.

1.8 PNdB EACH 20092 LB 21436 LB 98.8 IN. 98.8 IN. 436 IN. 459 IN.
TO MEET FAR 36 (9113.7 kg) (9723.4 kg) (2.510m) (2.510m) (11.074m) (11.659m)

WITHOUT SUPPRESSION
1061 PPS SIZE (481.3 kg/SEC)

11950 F (919 0 K) (FAN STREAM 2)

105 PNdB - 2100 FT (640m) 19854 LB 21289 LB 85.1 IN. 81.5 IN. 97.7 IN. 97.7 IN. 406 IN. 429 IN.
SIDELINE - SINGLE ENG (9005.8 kg) (9656.7 kg) (2.162m) (2.070m) (2.482m) (2.482m) (10.312m) (10.897m)

MEETS FAR 36



the size and weight of the two sized engines (both A and B versions). Based

on parametric data and information from P&WA, it is estimated that the two

duct suppressors add 1500 lb. (680.4 kg) to the engine weight, 4 inches (10.2 cm)

to the maximum diameter over the exhaust nozzle and 40 inches (101.6 cm) to

the engine length. As a result, the 1061 lb/sec (481.3 kg/sec) engine without

suppressors is approximately one percent lighter, one percent smaller in diameter,

and one percent shorter in length. Consequently, the 1061 lb/sec (481.3 kg/sec)

size engine with no suppression is selected for preliminary configuration

development and initial mission studies.

P&WA indicates that a 10 percent higher-than-design airflow feature at takeoff

could be used for the 201A and 201B engines; however, sufficient data were

not available for including this feature in the study.

The nozzles for the 201 engine are variable area type (variable throat and

exit areas) containing an integral thrust reverser and ejector on the primary

and one fan stream. No thrust reverser or ejector is included for the auxiliary

nozzle stream. No jet noise suppressor is incorporated. The primary and both

fan duct throat areas are variable. The engines including the P&WA nozzles

are shown in Figures 4-5 and 4-6, and the installed engines, including auxiliary

inlets, are shown in Figures 4-7 and 4-8. To accommodate the high flow at

supersonic cruise of the 201B, the 201A hub-to-tip diameter ratio is reduced

from .381 to .33 to increase the inlet annulus flow area. However, as this

causes a reduction in overall pressure rise across the fan, a third fan stage

is added to both 201B fans to maintain overall design fan pressure ratio of 2.5.
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Engine weights, dimensions, scaling equations and cost data are presented in

Table 4-2. The cost data are based on P&WA cost information provided as part

of the Advanced Supersonic Propulsion System Technology Studies conducted under

contract to NASA Lewis in 1973. Costs have been escalated to 1973 by DAC

based on 1972 dollar values provided by the engine manufacturers' study.

VCE 302B Sizing

The data for the unaugmented variable cycle engine are based on the P&WA

Task VII engine identified as 302B. This engine is a dual-valve, two-nozzle

stream configuration with no duct heating augmentation. It is designed for

Mach 2.2 to 2.7 supersonic cruise operation (configured by DAC in this

application for Mach 2.2 supersonic cruise) and reflects technology levels

consistent with initial operational capability in the late 1980's.

The 302B engine is identical to the 201 engine except that the duct burners

and the third nozzle stream are deleted as illustrated in Figure 4-9. The

engine has a twin-spool configuration with Fan 1, Fan 2, LPT and LPT 2 all

constituting the LP rotor spool. This arrangement allows the work to drive

the two fans to be distributed between these two low pressure turbines in the

most advantageous manner for each flight condition. The HP rotor spool con-

sists of the HP compressor (HPC), primary combustor, and the HP turbine (HPT).

For takeoff operation, the forward valve is in the cross-over position (top

sketch in Figure 4-9). In this mode, air flows from the first fan to the

outer duct and inlet air crosses directly into the second fan. The rear valve

is also in the cross-over position. This mode yields minimum noise levels

while providing maximum thrust by allowing the second burner to serve as a

thrust augmentor in place of duct-heaters. For supersonic operation, the

first valve is in the straight-through position and the second valve is again
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TABLE 4-2
P&WA VCE 201A AND B ENGINE CHARACTERISTICS SUMMARY

1061 LB/SEC (481 kg/SEC) RATED AIRFLOW

DESIGN CYCLE CHARACTERISTICS DIMENSIONS 201A 201B

BYPASS RATIO 3.0 ENGINE INLET GAS
FAN PRESSURE RATIO FLOW PATH DIA - IN. (m) 69.5 (1.765) 64.3 (1.633)FAN 1 2.5 HUB-TO-TIP RATIO (AT PLANE

FAN 2 2.5 OF ATTACH FLANGE) 0.381 0.33CYCLE PRESSURE RATIO 20 ENGINE MAX DIA - IN. (m) 97.7 (2.482) 97.7 (2.482)COMBUSTOR EXIT TEMP 2600oF (1700 0 K) LENGTH - INLET FLANGE TO
EXHAUST PLANE - IN. (m) 405.9 (10.310) 429.3 (10.904)TAKEOFF RATINGS [STD DAY + 180 F (100C)]

SCALING FACTORS
MAX THRUST (SLS) - LB (kN) 60,375 (268.56)
MAX THRUST (SL, 0.3 M, UNINSTALLED) - LB (kN) 55,240 (245.72) WT /WAT2\ 1.086

WEIGHT )WEIGHT (LB) 201A 201B WT BASE 1061

ENGINE - LB (kg) 15,787 (7161.0) 16,983 (7703.5) D /WAT2 0.50
ENGINE/NOZZLE/ DIAMETER D WAT2

REVERSER - LB (kg) 19,854 (9005.8) 21,289 (9656.7) D BASE 1061/

L (WAT2 0.39
LENGTH = =

L BASE 1061

COST*

ENGINE/NOZZLE $5.63M

COST /WAT2 0.53
SCALING FACTOR =

COST BASE 1061*BASED ON: o 1973 DOLLARS
* 1980 ENGINE TECHNOLOGY
* PRICES INCLUDE ALL DEVELOPMENT COSTS PLUS FIVE-YEAR PRODUCT SUPPORT AFTER CERTIFICATION,

BASED ON ONE-ENGINE MODEL
* 3000-ENGINE PRODUCTION RUN
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crossed. This converts the engine to two turbojet cycles as shown in the

bottom sketch of Figure 4-9. For subsonic cruise and loiter operation, the

first valve is crossed and the second is straight-through. For this mode, the

second burner is off. This combination minimizes the fuel consumption level

for these intermediate and low thrust operating conditions.

Other features of this engine include:

o High engine airflow at supersonic cruise which allows the engine to better

match airflow characteristics of the inlet between takeoff and supersonic

cruise.

o Ten percent higher-than-design airflow at static to 0.3 Mach to decrease

jet noise for takeoff.

Preliminary sizing criteria for this engine are the same as for the 201.

Figure 4-10 illustrates the engine sizing logic showing the resultant engine

size airflow and P&WA supplied single engine jet noise at 2100 ft (640 m) side-

line [modified by DAC to simulate four engine jet noise at this condition, sea

level, 0.3 Mach, Std. + 18*F (10C) day] for varying percent of takeoff thrust

at a takeoff thrust requirement of 52,000 Ib/engine (231.3 kN). Temperature

of the duct exhaust stream, being non-augmented, does not exceed 7450F (670 0K),

thereby not imposing a constraint for suppressors, should they be required.

Examination of Figure 4-10 shows that FAR Part 36 sideline noise level is not

exceeded, even at full throttle. Maximum four engine jet noise at sideline is

107.9 EPNdB at the 100% takeoff power setting. At the optional 10 percent

higher-than-design airflow power setting offered by P&WA (note Figure 4-11),

the noise at sideline is 106.9 EPNdB. Therefore, at sideline, no suppressors

are required and the engines can be sized at full throttle with no cutback.
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P&WA VCE -302B
DUAL VALVE, NONAUGMENTED

SEA LEVEL, 0.3 M, 2100 FT (640 m)
SIDELINE, STD + 18oF (10C DAY)

FN REQUIRED= 52,000 LB/ENGINE (231.31 kN)
(UNINSTALLED)

109
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FAR PART 36 NOISE LIMIT
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wuJ
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w Z 105

z
w 104

103
*NOISE BASED ON P&WA SUPPLIED

SINGLE ENGINE JET NOISE DATA
(SL, 0.3 M, 2100 FT (640 m) SIDELINE,
STD + 180 F (100 C) DAY) MODIFIED BY
DAC TO SIMULATE 4 ENGINE, WITH

LB/SEC I(kg/SEC) SHIELDING
1600
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FIGURE 4-10. ENGINE SIZING FOR TAKEOFF
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P&WA VCE - 302B

DUAL VALVE, NONAUGMENTED
100% WAT2 = 1003 LB/SEC (455 kg/SEC)

120,

HIGH MODE

10% HIGHER-

1101 THAN-DESIGN
AIR FLOW OPTION

100 - -.

0
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U.

w 90

U

0
FIGURE 4-11. ENGINELOW MODET AIRFLOW SCHEDULE
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FIGURE 4-11. ENGINE INLET AIRFLOW SCHEDULE
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At the 100% takeoff lb/sec power setting, the engine size required for 52,000 lb.

(231.3 kN) takeoff thrust is 1097 lb/sec (497.6 kg/sec) design corrected air-

flow. Utilizing the 10 percent higher-than-design airflow feature, the engine

size required is reduced to 1003 lb/sec (455 kg/sec) design corrected airflow.

Noise at takeoff/cutback has been examined. Figure 4-12 illustrates four

engine takeoff/cutback noise (DAC estimated) at 1050 ft. (320 m) altitude over

the 3.5 n.m. (6.5 km) monitor point for the two takeoff-sized engines, 1097

and 1003 lb/sec (497.6 and 455 kg/sec) inlet design corrected airflow. At the

cutback thrust requirement of 33,250 Ib/engine (147.9 kN), it is shown that

FAR Part 36 takeoff noise level is not exceeded, four engine jet noise for the

1097 lb/sec (497.6 kg/sec) and the 1003 lb/sec (455 kg/sec) sized engines are

105.4 and 106.1 EPNdB respectively.

Summarizing, noise levels at sideline and takeoff/cutback are below the FAR

Part 36 noise levels. Therefore, no suppressors are required and noise is not

a constraint for engine sizing. The engine size of 1003 lb/sec (455 kg/sec) is

used for the preliminary configuration development and initial mission studies.

The minimum size engine is selected to conform with the prerequisite of

working with engine manufacturers, using their data, and exploiting their esti-

mated maximum technology projections.

The nozzles for this engine are variable area type (variable throat and exit

area) containing an integral thrust reverser and ejector. Both the primary and

fan duct throat areas are variable. No jet noise suppressor is incorporated.

The engine including the P&WA nozzle is shown in Figure 4-13 and the installed

engine, including auxiliary inlet, is shown in Figure 4-14.
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P&WA VCE -302B
DUAL VALVE, NONAUGMENTED

1050 FT (320 m) ALTITUDE, 0.3 MACH, STD + 18oF (100 C) DAY
FN REQUIRED = 33,250 LB/ENGINE (147.9 kN) UNINSTALLED

DAC GENERATED NOISE
NO SUPPRESSORS

118
WAT2 DESIGN = 1003 LB/SEC (455 kg/SEC)

WAT2 DESIGN = 1097 LB/SEC (497.6 kg/SEC)
116

X "SIZED FOR
10% HIGHER-
THAN-DESIGN
WAT2

" 114
z

0w

- 112

110

w

108 - FAR PART 36 NOISE LIMIT

-.J

< 10

I-

U-

CUTBACK THRUST REOUIRED - 33,250 LB (147.9 kN)

104

(150) (200) (250), (k N)

102
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SINGLE ENGINE NET THRUST

FIGURE 4-12. INFLIGHT NOISE CHARACTERISTICS
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Engine weights, dimensions, scaling factors, equations and cost data are

presented in Table 4-3.

The cost data are based on P&WA cost information provided as part of their

Advanced Supersonic Propulsion System Technology Studies conducted under

contract to NASA Lewis in 1973. Costs have been escalated to 1973 by DAC

based on 1972 dollar values provided by the engine manufacturers' study.

Final Engine Selection

A simplified performance evaluation has been conducted on the three engines

described to select one engine for a more in-depth study required to comnare

the VCE with the other engines. The installed engine performance characteristics

of each candidate engine have been generated with emphasis on installation

effects which are peculiar to each engine. For example, the 201A and 2018

engines each discharge the third stream during the high flow mode through

a separate auxiliary nozzle wrapped around the nacelle. Since there is no

flow through this nozzle during supersonic cruise, and there appeared to be

no way to fair over the nozzle when it was not being used, an estimated base

drag installation penalty of 3.83 drag counts (AC D = .000383) is included

for these engines.

For the purpose of this initial screening, it has been assumed that the wave

drag and the structural weight penalty would be essentially the same for each

engine when installed on the airplane. The mission performance with each engine

has been determined, based on these assumptions, and using the estimated

engine and nacelle weights. Table 4-4 compares the mission performance of the

three VCE engines, based on the above assumptions, plus the estimated engine

and nacelle weights. In addition, results of a trade study evaluating impact

of augmentation during climb (for the augmented engines 201A and 201B) on

mission performance are presented.
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TABLE 4-3

P&WA VCE 302B ENGINE CHARACTERISTICS SUMMARY
1003 LB/SEC (455 kg/SEC) RATED AIRFLOW

DESIGN CYCLE CHARACTERISTICS DIMENSIONS

BYPASS RATIO (TAKEOFF/SUPERSONIC) 3.0/0 ENGINE INLET GAS
FAN PRESSURE RATIO FLOW PATH DIA - IN. (m) 64.36 (1.635)

FAN 1 2.5 HUB-TO-TIP RATIO (AT PLANE
FAN 2 3.0 OF ATTACH FLANGE) 0.377

CYCLE PRESSURE RATIO 20
ENGINE MAX DIA - IN. (m) 99.17 (2.519)

COMBUSTOR EXIT TEMP OF (OK)
(1ST BURNER/2ND BURNER) LENGTH - INLET FLANGE TO
TAKEOFF 2600/2600 (1700/1700) EXHAUST PLANE - IN. (m) 431.17 (10.952)
MAX TRANSONIC CLIMB 2500/2500 (1644/1644)
MAX SUPERSONIC CRUISE 2400/2100 (1589/1422) SCALING FACTORS

TAKEOFF RATINGS [STD DAY + 180 F (100 C)] WT _WAT2 1.086
M T WEIGHT HWT BASE =

MAX THRUST (SLS)- LB (kN) 58,050 (258.22) WT BASE
MAX THRUST (SL,0.3M, UNINSTALLED - LB (kN) 52,000 (231.31)

D /WAT2 5 0

WEIGHT DIAMETER I -= I
D BASE \1003/

ENGINE - LB (kg) 15,863 (7195.5)
ENGINE + NOZZLE/REVERSER - LB (kg) 19,575 (8879.2) L /WAT2\ 0 .3 9

LENGTH I I
L BASE \1003/

COST*

ENGINE/NOZZLE $4.89M

COST (WAT2\ 0.53

*BASED ON: e 1973 DOLLARS COSTBASE = 1003
* 1980 ENGINE TECHNOLOGY
* PRICES INCLUDE ALL DEVELOPMENT COSTS, PLUS FIVE-YEAR PRODUCT SUPPORT AFTER CERTIFICATION,

BASED ON ONE-ENGINE MODEL
* 3000-ENGINE PRODUCTION RUN



TABLE 4-4

ENGINE PERFORMANCE COMPARISON
TAKEOFF GROSS WEIGHT = 750,000 LB (340,194 kg)

PAYLOAD = 55,965 LB (25,385 kg)

ENGINE 201A 201B 302B

ENGINE SIZE, LB/SEC 1061 (481 kg/SEC) 1061 (481 kg/SEC) 1003 (455 kg/SEC)

OPERATING EMPTY WEIGHT, LB 338,620 (153,595 kg) 344,356 (156,197 kg) 345,867 (156,883 kg)

PARTIAL PARTIAL MAX
CLIMB THRUST NO AUG MIN AUG AUG NO AUG MIN AUG AUG CLIMB

RANGE, N MI 2983 2982 2973 2848 2857 2845 3088
(5525 km) (5523 km) (5506 km) (5274 km) (5291 km) (5269 km) (5719 km)



Of the three VCE engines, the non-augmented 302B provides the best range.

The augmented versions showed approximately 100 n.mi. (185 km) less range.

Also shown is that, for maximum range, very little augmentation is required

of the augmented engines during climb.

Conclusion

Based on these results, the 302B engine has been selected for the in-depth

engine-airframe integration study. NASA concurred with this selection.
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ENGINE - AIRFRAME INTEGRATION

As concluded from the previous paragraph, the P&WA -302B engine is the

variable cycle engine selected for in-depth airframe integration study. The

data for the engine consisted of a 2.4M data package.prepared by P&WA under

the NASA Lewis engine study contract. DAC corrected the data to the desired

conditions (2.2M and DAC installation requirements) for the integration study.
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PROPULSION SYSTEM PERFORMANCE

Uninstalled Performance

The uninstalled performance includes the effects of:

o U.S. 1962 model atmosphere

o Inlet recovery Figure 1-6

o P&WA supplied internal nozzle

velocity coefficient

o Customer compressor airbleed 1 lb/sec (.454 kg/sec)

o Customer power extraction 200 HP (149 kW)

o Jet A Fuel, Lower Heating Value 18,400 BTU/lb (4.34 x 107 J/kg)

o No losses for acoustical

treatment

Installed Performance Analysis

The analysis of the propulsion system performance of the -302B engine follows

the same procedures used for the baseline turbojet engine (Section 1).

The inlet performance and the nacelle analysis include an evaluation of the

following items:

o Inlet spillage drag

o Inlet bypass drag

o Engine and ECS cooling airflow drag

o Nacelle skin friction drag

o Nacelle afterbody drag

o Nacelle wave drag
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The inlet geometry and cone schedules are the same as used for the turbojet

engine. The inlet total pressure recovery variation is shown in Figure 1-6.

Also shown in the figure is the variation of inlet critical mass-flow ratio.

Shown in Figure 1-7 is the mass-flow ratio for the inlet boundary layer bleed

airflow.

The engine airflow schedule for the -302B engine is shown in Figure 4-11. The

installed inlet performance for this engine is shown in Figure 4-15. As

shown by the upper graph in the figure, the inlet airflow supply provides an

adequate match with the engine airflow demand. The inlet is sized at the

design point of 2.2 M. The sized capture area is 29.5 sq. ft. (2.74 sq. m.).

The engine and ECS cooling airflow are based on an allowance of 2.0 percent

of inlet capture area airflow for the environmental control system (ECS) cooling

and for engine compartment ventilation and nozzle cooling.

The nacelle drag coefficient buildup is shown in the lower graph in Figure 4-15.

The inlet drag characteristics are calculated by combining the mass-flow-ratio

characteristics with empirical drag coefficient correlations. For the conven-

ience of engine sizing studies, the nacelle skin friction drag is included in

the installed engine performance. The skin friction coefficients are based on

fully turbulent flat plate adiabatic wall boundary layer data with transition

at the leading edge and the resulting drag is shown in the figure.

The nacelle afterbody drag is dependent on the nozzle exit area and flight

Mach number. The maximum nozzle area is sized at 2.2 M climb. The engine

dependent boattail drag at this condition is zero. As nozzle area decreases

for lower Mach numbers and reduced power settings, the boattail drag increases.

The boattail drag identified with this area change is based on drag characteristics
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FIGURE 4-15. INSTALLED INLET PERFORMANCE
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estimated for the DAC baseline configuration. The variations in drag coefficient

relative to the design condition along the aircraft climb path at maximum climb

thrust and for subsonic flight are shown in Figures 4-16 and 4-17.

The nacelle wave drag in the presence of the aircraft, including the super-

critical spillage drag and the design afterbody drag is part of the aircraft

wave drag.

Performance Results

Installed propulsion system performance is generated by correcting the uninstalled

engine performance data for the installation effects described above. The

climb performance characteristics are generated along the aircraft flight path

shown in Figure 1-12. Uninstalled and installed thrust for the takeoff power

setting are shown in Figure 4-18. Figures 4-19 and 4-20 present the uninstalled

and installed thrust and SFC, respectively, for maximum climb thrust along the

climb flight path. Uninstalled and installed supersonic cruise, subsonic

cruise (for alternate mission), and hold performance are shown in Figures 4-21

through 4-23. Figure 4-24 presents the installed characteristics used along

the descent flight path.
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P&WA VCE -302B

WAT2 = 1003 LB/SEC (455 kg/SEC)

Ac = 29.5 FT2 (2.74 m2 )
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FIGURE 4-16. CLIMB AFTERBODY DRAG,
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P&WA VCE - 302B

WAT2 = 1003 LB/SEC (455 kg/SEC)
Ac = 29.5 FT2 (2.74 m 2

)

CRUISE - HIGH MODE
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FIGURE 4-17. SUBSONIC AFTERBODY DRAG
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P&WA VCE -302B

SEA LEVEL, HIGH MODE, STD + 180 F (100 C) DAY

WAT2 = 1003 LB/SEC (455 kg/SEC)
kN
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FIGURE 4-18. TAKEOFF PERFORMANCE
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P&WA VCE -302B
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FIGURE 4-19. CLIMB THRUST
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P&WA VCE -302B
STD DAY

LB/HR/LB LOW MODE
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FIGURE 4-20. CLIMB SFC
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LB/HR/LB P&WA VCE - 302B
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FIGURE 4-21. SUPERSONIC CRUISE PERFORMANCE
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P&WA VCE - 302B

STD DAY
1000 LB/HR WAT2 = 1003 LB/SEC (455 kg/SEC)

80,

INSTALLED

1000 kg/HR

30

60

0 20
-J

U.

-J

w

U- 10 20

10

i- 40

w
w

S10

-0 0

1000 LB
kN

-10
40

c-

I4-45

0 0

0
w

w

-40

-20
0 0.4 0.8 1.2 1.6 2.0 2.4

MACH NO.

FIGURE 4-24. IDLE PERFORMANCE

4-45



CONFIGURATION INTEGRATION

Engine/Nacelle Location

Installation studies of the variable cycle dual valve engine, P&WA -302B, for

the baseline airframe in four axisymmetric nacelles have been completed.

Inboard and outboard spanwise locations of engines at intake face are as for

-5A, -5B and -5C aircraft.

The increase of the dimensions and weight of the -302B pod as compared to the

-5A, -5B and -5C configurations make the choice of a fore and aft location of

power plant to wing very critical. Aerodynamic and structural analysis of the

power plant installation on the -5A, -5B and -5C configurations have

established the substantial drag and/or structural penalties occurring with

engine intake face and c.g. shifts both fore and aft with respect to the base-

line case. This information coupled with the requirements for the mechanical

attachment of the engine to the wing determined the location selected as

described on the -5D configuration 3-view drawing (Figure 4-25).

The resultant position of the engine pods allows use of the total circumferential

area of the nozzles for reverse thrust.

Engine Nacelle Attachment to Wing

Engine mounting to the wing is by a three-point attachment, as shown in Figure 4-26.

The aft mount is on a box beam pylon cantilevered aft of the rear spar and the

two forward mounts are attached to structure forward of the rear spar.

Support structure for the forward mounts is external to the wing lower surface

and attached through the skin panels to the inboard and outboard pairs of slant

ribs in the wing torque box. The forward right hand link from engine to wing

carries thrust loads, vertical loads and side loads to the aircraft structure.

The forward left hand link transmits forward and vertical loads only. The aft
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mounting link carries vertical loads and translates for engine growth under

operating temperatures (Figure 4-26). Due to the size and weight of the -302B

engine, the support pylon protrudes above the,upper surface of the wing aft

of the rear spar. These protruberances are shown on the three view drawing -5D

configuration, fairing from the rear spar aft to the engine nozzle forward

edge on the upper t of engine.

The axisymmetric intakes are attached to the engine casing and divorced from

the wing structure. This prevents transmission of wing deflection loads and

associated distortion of intake geometry or loading of engine casing.

The boundary layer diverter is integrated into the engine nacelle/wing fairing.

Other Configuration Changes

The location and size of the VCE engine pods dictate an increase of 26 inches

(66 cm) in the length of the landing gear struts to maintain ground clearance

to engine nozzles on maximum rotation. To accommodate this increased length

of gear in the wheel well, spar number 3 was relocated at Sta. Yc = 1960 (was

Yc = 2000). The forward nose gear bulkhead is relocated to Sta. Y = 790 (was

Y = 810). Main and nose landing gear doors are lengthened to suit.

Provision for the environment control bay is relocated between Sta. Yc = 1960

and Yc = 2120. As the engine nozzles become the critical point for aircraft

ground clearance on rotation, the tail bumper and ventral fairing are deleted.

Clearance of rear fuselage to ground on 140 maximum rotation is 55 inches

(139.7 cm).

The relocation of spar number 3 necessitates an adjustment of the fuel tank

arrangement.
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Tanks No. 1 and No. 4 main, No. 2 and No. 3 main, and No. 2 and No. 3 alternate

are resized which produces an overall reduction in fuel capacity of 6,700 lb.

(304 kg) per aircraft.
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ACOUSTIC ANALYSES

The acoustic analysis conducted for the variable cycle engine powered aircraft

configuration consists of the calculation of jet noise estimates in support of

engine sizing studies. Engine data are employed to estimate the jet noise at

aircraft Mach numbers and altitudes representative of the FAR Part 36 takeoff

and sideline measuring conditions. The standard climb profile features a

thrust cutback over the takeoff measuring station.

The engine size is selected at an airflow rate of 1003 lbs./sec (455 kg/sec)

with no jet noise suppression required. A description of the engine sizing

analysis is given in the Engine Sizing section.

The predicted unsuppressed jet noise levels for the 302B engine in the base-

line airplane based on specific engine conditions along the calculated

takeoff trajectory are as follows:

FAR PART 36 UNSUPPRESSED TOTAL NOISE,
MEASURING STATION DISTANCE, FT. EPNL, EPNdB

Sideline 2270 (747 m) 106.5*

Takeoff/with Cutback 1225 (374 m) 106.3

*Includes allowance of 3.0 EPNdB for extra ground attenuation.
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STRUCTURAL ANALYSIS

Strength Analysis

The engine propulsion plus nacelle weight from Table 4-5 is 99,417 pounds

(45,095 kg) with its c.g. located nine inches (23 cm) aft of the -5A baseline

configuration. The nine inch (23 cm) aft movement would increase the

structural optimization weight by 200 pounds (91 kg) per side (see point 8 on

Figure 4-27). The increase in propulsion system plus inlet weight of 7249 pounds

(3288 kg) per side (Table 4-5) over the -5A baseline results in a structural

optimization weight increase of 537 pounds (244 kg) per side (see Figure 4-27,

point 9 and point 8). The sumefor the aft c.g. location and increased weight

is 737 pounds (334 kg) per side or 1474 pounds (669 kg) per airplane.

Flutter Analysis

The baseline case described in Section 2 has been analyzed further by strength

optimizing the structure, increasing the stiffness for roll and control

effectiveness, and including fuel in the outer wing tank. Using this base,

the -5C (duct heating turbofan), and -5D (VCE) have been analyzed for incre-

mental flutter effects. The -5D zero speed bending frequency is lower than

the torsion frequency and rises more slowly with airspeed because of its

heavier mass, thus causing coalescence with the flat rising torsion mode at a

slightly higher speed. The opposite occurs with the lighter weight, -5C.

Flutter occurs at a slightly lower speed than the baseline case, which is

450 KEAS (.232 m/sec EAS) at 100 percent fuel. The lower flutter speed for

-5C, 425 KEAS (.218 m/sec EAS) is approximately the same as an earlier non-

optimized base case, -5A-l. Adding 860 lbs. (390 kg) for flutter optimization

for case -5A-1 was sufficient to increase this speed to the required flutter

speed of 480 KEAS (.247 m/sec EAS). It is anticipated that an 860 lb. (390 kg)

weight addition for flutter optimization (see Table 4-5) with the option for

fuel programming, that is, including fuel in the outer tank, will provide the
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required flutter speed of 480 KEAS (.247 m/sec EAS) for all configurations

analyzed in this report.
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WEIGHT ANALYSIS

Table 4-5 compares the weight of the AST, with dual cycle P&WA -302B engines

(-5D), to the turbojet baseline (-5A). The engines are scaled to a corrected

air flow of 1,003 lbs/sec (455 kg/sec). Each engine installation weighs

19,575 Ibs. (8879 kg), including 3,712 lbs. (1684 kg) for nozzle and reverser.

Comparable weights for the -5A baseline are 16,982 Ibs. (7703 kg) and 4,040 lbs.

(1833 kg) respectively. Total propulsion system weight is 80,400 lbs. (36,469 kg),

10,210 lbs. (4631 kg) greater than the -5A baseline turbojet, 20,469 lbs.

(9285 kg) greater than the mini-bypass -5B and 29,343 lbs. (13,310 kg) greater

than the duct heating turbofan, -5C.

The nacelle/inlet is 4,287 Ibs. (1945 kg) heavier than the baseline, -5A.

About half of this, 2,295 lbs. (1041 kg), reflects an increase in the weight

of the engine cowling. This is due to a larger engine envelope. The remainder,

1,992 lbs. (904 kg), reflects a heavier inlet installation, the result of an

increase in both length and capture area.

The 1,474 lbs. (669 kg) estimated for Structural Weight Increment accounts

for differences in pylon and engine support weight, along with differences

in wing and fuselage weight due to changes in load. The weight estimating

approach is discussed in Section 1. Analysis and derivation of the weight

penalty for aeroelasticity and flutter is discussed in the previous paragraph

of this section.

Minimum ground to exhaust nozzle clearance, at maximum rotation, establishes

the length of the main gear strut. The geometry and location of the -302B

engine necessitates a 26 inch (66 cm) increase in the length of the main gear

strut. An equivalent increase is required in the length of the nose gear

strut, to retain the same fuselage attitude during ground operation. This

results in a 1,220 lb. (553 kg) increase in gear weight, plus an additional
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TABLE 4-5.

WEIGHT COMPARISON - CONFIGURATION 5D
(VARIABLE CYCLE ENGINE) WITH 5A BASELINE (TURBOJET)

ENGLISH UNITS

WEIGHT - POUNDS

5A 5D
CONFIGURATION TURBOJET VCE DIFF.

ITEM

WING 75,347 75,537* +190
H-TAIL 3,960 3,960* 0
V-TAIL 3,807 3,807* 0
FUSELAGE 47,713 47,762* +49
LANDING GEAR 36,792 38,012 +1,220
FLIGHT CONTROLS 9,115 9,115 0
NACELLE/INLET 14,730 19,017 +4,287
PROPULSION (LESS FUEL SYSTEM) 70,190 80,400 +10,210
FUEL SYSTEM 3,820 3,820 0
EMERGENCY POWER UNIT 950 950 0
INSTRUMENTS 1,227 1,227 0
HYDRAULICS 5,684 5,684 0
PNEUMATICS 1,332 1,332 0
ELECTRICAL 4,850 4,850 0
NAVIGATION AND COMMUNICATIONS SYSTEM 2,756 2,756 0
FURNISHINGS 24,478 24,478 0
AIR CONDITIONING 4,854 4,854 0
ICE PROTECTION 489 489 0
HANDLING PROVISIONS 90 90 0

PENALTY - FLUTTER AND AEROELASTICITY 2,860** 2,860** 0

STRUCTURAL WEIGHT INCREMENT 1,474* +1,474

MANUFACTURER'S EMPTY WEIGHT 315,044 332,474 +17,430

OPERATIONAL ITEMS 8,096 8,096 0

OPERATIONAL EMPTY WEIGHT 323,140 340,570 +17,430

*THE WEIGHT INCREMENT FOR STRENGTH, ETC., FOR THESE ITEMS IS INCLUDED UNDER THE ITEM STRUCTURAL
WEIGHT INCREMENT AND LISTED SEPARATELY.

**2000 LB FOR ROLL AND CONTROL EFFECTIVENESS
860 LB FOR FLUTTER OPTIMIZATION
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TABLE 4-5.

WEIGHT COMPARISON - CONFIGURATION 5D
(VARIABLE CYCLE ENGINE) WITH 5A BASELINE (TURBOJET)

METRIC UNITS

WEIGHT - KILOGRAMS

5A 5D
CONFIGURATION TURBOJET VCE DIFF.

ITEM

WING 34,177 34,263* +86

H-TAIL 1,796 1,796* 0

V-TAIL 1,727 1,727* 0

FUSELAGE 21,642 21,664* +22

LANDING GEAR 16,689 17,242 +553

FLIGHT CONTROLS 4,134 4,134 0

NACELLE/INLET 6,681 8,626 +1,945

PROPULSION (LESS FUEL SYSTEM) 31,838 36,469 +4,631

FUEL SYSTEM 1,733 1,733 0

EMERGENCY POWER UNIT 431 431 0

INSTRUMENTS 557 557 0

HYDRAULICS 2,578 2,578 0

PNEUMATICS 604 604 0

ELECTRICAL 2,200 2,200 0

NAVIGATION AND COMMUNICATIONS SYSTEM 1,250 1,250 0

FURNISHINGS 11,103 11,103 0

AIR CONDITIONING 2,202 2,202 0

ICE PROTECTION 222 222 0

HANDLING PROVISIONS 41 41 0

PENALTY - FLUTTER AND AEROELASTICITY 1,297 1,297 0

STRUCTURAL WEIGHT INCREMENT -- 669* +669

MANUFACTURER'S EMPTY WEIGHT 142,902 150,808 +7,906

OPERATIONAL ITEMS 3,672 3,672 0

OPERATIONAL EMPTY WEIGHT 146,574 154,480 +7,906

*THE WEIGHT INCREMENT FOR STRENGTH, ETC., FOR THESE ITEMS IS INCLUDED UNDER THE ITEM STRUCTURAL
WEIGHT INCREMENT AND LISTED SEPARATELY.
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239 lb. (108 kg) increase in wing and fuselage structure, to accommodate the

longer struts.

The location of the mean line of the inlets of the variable cycle engines is

at Sta. 2460. This is 40 inches (101 cm) forward as compared to the turbojet

baseline -5A. The c.g. of the engine installation, however, is at station

2694, 9 inches (23 cm) aft of the baseline, -5A. The combined effect of the

shift in engine c.g., increased engine installation weight and heavier gear

and structure, moves the operational empty weight c.g. 21.5 inches (54.5 cm)

aft of the baseline configuration. The total increase in operational empty

weight is 17,430 lbs. (7906 kg). Total OEW including this increase is

340,570 lbs. (154,480 kg).
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AIRPLANE PERFORMANCE

Aerodynamics Analysis

The trimmed lift and drag characteristics for the -302B powered aircraft are

obtained by adjusting the wave drag of the baseline turbojet powered aircraft

for the difference due to the larger nacelles. The difference in nacelle

skin friction drag is accounted for in the installed propulsion system

performance. The wave drag program predicts a reduction in supersonic wave

drag of 1.59 counts (ACD = .000159) due to the differences in nacelle shape

and location. The characteristics used to determine the mission performance

for the -302B powered aircraft are obtained by subtracting this increment from

the wave drag of the baseline turbojet powered aircraft, -5A.

Performance Results

Estimated performance characteristics for the -302B powered aircraft are

presented in Figures 4-28 through 4-30 as a function of engine size. The

mission profile and reserve ground rules are the same as used for the baseline

turbojet aircraft (Figure 1-20). The takeoff gross weight is held constant

at 750,000 lb. (340,194 kg) and the payload is fixed at 55,965 lb. (25,385 kg).

Figure 4-28 presents the takeoff characteristics and the height above the run-

way at 3.5 n.mi. (6.5 km) from the start of takeoff, with the throttle cut

back to meet the 4 percent all engine climb gradient requirement of FAR Part 36.

The characteristics of the aircraft with the engine size selected as

described in the engine sizing section are indicated on the figure. The

performance of the baseline turbojet aircraft, -5A, is shown for reference.

Figure 4-29 presents the variation of operator's weight empty with engine size

used for the mission performance calculations, the altitude for maximum

range factor at the start of the 2.2 M cruise, and the mission range.
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P&WA VCE - 302B
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FIGURE 4-28. EFFECT OF ENGINE SIZE ON TAKEOFF PERFORMANCE
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P&WA VCE -302B

TAKEOFF GROSS WEIGHT = 750,000 LB (340,194 kg)
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P&WA VCE -302B

M = 2.2

N MI. km
9000

-16,000

0 15,000
I.- 8000

u. -14,000

z

7000 - 13,000

12,000

6000

(LB/HR/LB) (kg/HR/N)
-0.17-

1.7

2 -0.16
O i.6

C
"  -0.15

E. - 1.5- -

0 0 -0.141.4

-0.13
1.3

10

BASELINE TURBOJET

C 9

SELECTED ENGINE SIZE
8

300 350 400 450 500 550 kg/SEC

.7 t I III i
600 700 800 900 1000 1100 1200 LB/SEC

ENGINE REFERENCE AIRFLOW - WAT2

FIGURE 4-30. EFFECT OF ENGINE SIZE ON CRUISE PARAMETERS
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The selected engine size as indicated in the figure is identical to that

specified in the engine sizing paragraph. A smaller size engine indicates better

range, however, the -302B is sized at its maximum takeoff thrust, unthrottled,

with no suppressor and cannot be sized smaller without significant penalty in

takeoff performance. Figure 4-30 presents some of the details of the effect of

engine size on the optimum cruise L/D, cruise installed SFC, and the 2.2 M

cruise range factor.

For changes with engine sizing, the data presented in Figures 4-29 and 4-30

account for the engine and nacelle weight, and inlet and nacelle drag, but

neglects the changes in aircraft wave drag. For a ten percent change in

engine size, this wave drag effect on performance is quite small, but can be

significant for the larger engine sizes.

The performance for the -302B powered aircraft with the 1003 lb/sec (455 kg/sec)

engine is summarized below:

Takeoff Gross Weight 750,000 lb. (340, 194 kg)

Payload 55,965 lb. (25,385 kg)

Takeoff Field Length 11,000 ft. (3350 m)

Height at 3.5 n.mi. (6.5 km)
Takeoff Point 1,225 ft. (373 m)

Range 3,090 n.mi. (5722 km)

Initial Cruise Altitude 58,060 ft. (17.7 km)

Direct Operating Cost (1973 $) 2.21 cents/seat n.mi.

The variation in range vs. initial subsonic leg length is shown in Figure 4-31.

For a 600 n.mi. initial subsonic leg, the range penalty is 3 percent.
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P&WA VCE -302B

TAKEOFF GROSS WEIGHT = 750,000 LB (340,194 kg)
PAYLOAD 55,965 LB (22,385 kg) 273 PASS.
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FIGURE 4-31. EFFECT OF INITIAL SUBSONIC LEG ON RANGE
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